Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Langmuir ; 38(39): 11845-11859, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36121768

ABSTRACT

We report the synthesis of a new conjugated polymer bearing crown ether moieties, poly[(N(1-aza-[18]crown-6)carbamido)thiophene-2,5-diyl-alt-1,4-phenylene] (BG2). In water, BG2 forms a dispersion with a slightly cloudy appearance. We have studied the effect of adding surfactants, with different polar head groups, on these polymer-polymer aggregates. Special attention is given to the system with the anionic surfactant, sodium dodecyl sulfate (SDS). The combination of photophysical techniques with electrical conductivity, NMR (1H, 13C, and 27Na), DFT calculations, molecular dynamics simulations, and small-angle neutron scattering (SANS) provides a detailed picture on the behavior of the SDS/BG2 system in aqueous solution and in thin films. NMR, electric conductivity, and DFT results suggest that hydrophilic interactions occur between the polar headgroup of the surfactant (OSO3- Na+) and the aza-[18]-crown-6 moiety. DFT calculations confirmed the capability of BG2 to form stable complexes with the Na+ cations, where the cation can be either inside the azacrown cavity or sandwiched between the cavity and the polymer chain, which seem to determine the position of the surfactant hydrocarbon chain and, therefore, be responsible for the disruption of the BG2 aggregates and subsequent increase in the photoluminescence quantum yields. SANS measurements, made with hydrogenated and deuterated SDS in D2O, clearly show how micron-sized aggregates of BG2 are broken down by SDS and then how BG2 becomes preferentially incorporated within joint colloidal particles of BG2 and SDS with increasing [SDS]/[BG2] molar ratio.

2.
Dalton Trans ; 50(46): 16970-16983, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34752595

ABSTRACT

Following previous studies on the complexation in aqueous solutions of 8-hydroxyquinoline-5-sulfonate (8-HQS) with the trivalent metal ions, Al(III) and Ga(III) and various other metal ions, using multinuclear NMR, DFT calculations, UV-vis absorption and luminescence techniques, we have extended our studies on 8-HQS complexation to the trivalent metal ion In(III). The study combines the high sensitivity of luminescence techniques and the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to obtain a complete understanding of the complexation between the In3+ metal ion and 8-HQS, and how this influences the luminescence behaviour. A full speciation study has been performed and, as has been reported for the complexes of 8-hydroxyquinoline (8-HQ), the dominant complexes of 8-HQS with In(III) show marked differences in the complexation behaviour when compared with the equivalent complexes with the other group 13 cations Al(III) and Ga(III). While all three complexes have a 1 : 3 (metal : ligand) stoichiometry, those with Al(III) and Ga(III) show a mer-geometry of the ligands around the metal centre, whereas the fac-geometry is observed for the complexes with In(III). On binding to metal ions, 8-HQS shows a marked increase in the intensity of the fluorescence emission band compared to that of the virtually non-luminescent free ligand. However, the increase for In(III) is less pronounced than with Al(III) or Ga(III). These observations have important implications for the application of the complexes in sensing, light emitting devices (e.g. OLEDs), or as electron transport layers in photovoltaics for solar energy conversion. Furthermore, surfactant complexation is known to improve the fluorescence intensity in metal complexes with 8-HQS, by inhibiting the ligand exchange, as we have reported for complexes of HQS with Al(III) and Ga(III). Accordingly, in view of the development of applications in either sensing or optoelectronics, our interest also includes the study of HQS complexes of In(III) in the presence of cationic surfactants, in comparison with previous results with Al(III) and Ga(III).

3.
Eur Phys J E Soft Matter ; 42(7): 94, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31324997

ABSTRACT

Transport properties of model compounds in aqueous solutions such as amino acids can provide valuable information in order to understand the complex interactions in aqueous solutions as well as the protein stability in water and the relevant factors involved. Informations about the diffusion of amino acids in water and in aqueous solutions of sodium chloride are very scarce, especially for the 5-aminopentanoic acid and 6-aminohexanoic acid. In this study, limiting binary mutual diffusion coefficients at 298.15 K of 5-aminopentanoic and 6-aminohexanoic acids in aqueous solutions of NaCl 0.15 mol kg-1, using the Taylor dispersion technique, were determined and the results compared with the limiting binary mutual diffusion coefficients for 2-aminopentanoic acid, and 2-aminohexanoic acid, obtained in the same experimental conditions. The discussion of the properties of the selected amino acids is centered on the positions of the ionic groups in the hydrocarbon chain and, in addition, we have discussed the effects of NaCl on their structures and properties. The data on diffusion properties are supported by 1H, 13C and 23Na NMR experiments, which we have obtained for 5-aminopentanoic and 6-aminohexanoic acids, in aqueous solution, also in the presence of NaCl.

4.
Dalton Trans ; 46(29): 9358-9368, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28548670

ABSTRACT

Multinuclear (1H and 13C) NMR, and Raman spectroscopy, combined with DFT calculations, provide detailed information on the complexation between U(vi) oxoions and 8-hydroxyquinoline-5-sulfonate (8-HQS) in aqueous solution. Over the concentration region studied, U(vi) oxoions (uranyl ions) form one dominant complex with 8-HQS in water in the pH range 3-6, a mononuclear 1 : 2 (metal : ligand) complex, with the metal centre (UO22+) coordinated to two 8-HQS ligands, together with one or more water molecules. An additional minor 1 : 1 complex has also been detected for solutions with a 1 : 1 metal : ligand molar ratio. The geometry of the dominant complex is proposed based on the combination of the NMR and Raman results with DFT calculations. Further information on the electronic structure of the complex has been obtained from UV/visible absorption and luminescence spectra. The complex of U(vi) and 8-HQS is non-luminescent, in contrast to what has been observed with this ligand and many other metal ions. We suggest that this is due to the presence of low-lying ligand-to-metal charge transfer (LMCT) states below the emitting ligand-based and uranyl-based levels which quench their emission. These studies have fundamental importance and are also relevant in the context of environmental studies, and the water soluble ligand 8-HQS has been chosen for application in uranium remediation of aqueous environments.

5.
Phys Chem Chem Phys ; 18(25): 16629-40, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-26817700

ABSTRACT

We have studied the interaction of 8-hydroxyquinoline-5-sulfonate (8-HQS) with the metal ions Al(iii) and Zn(ii) in aqueous solution in the presence of tetraalkylammonium surfactants using UV/vis absorption, fluorescence, NMR spectroscopy and electrical conductivity measurements, complemented by DFT calculations and molecular dynamics (MD) simulations. Under appropriate conditions, complexes between 8-HQS and metal ions form rapidly, and have similar electronic, spectroscopic and photophysical properties to the corresponding metal quinolates, such as Alq3. These interact with the cationic surfactants, leading to marked increases in fluorescence intensity. However, significant differences are seen in the behavior of the two metal ions. With aluminium, a stable [Al(8-QS)3](3-) anion is formed, and interacts, predominantly through electrostatic interactions, with the surfactant, without disrupting the metal ion coordination sphere. In contrast, with Zn(ii), there is a competition between the metal ion and surfactants in the interaction with 8-HQS, although the [Zn(8-QS)2(H2O)2](2-) species is stable at appropriate pH and surfactant concentration. The studies are extended to systems with the conjugated polyelectrolyte (CPE) poly-(9,9-bis(6-N,N,N-trimethylammonium)hexyl)-fluorene-phenylene bromide (HTMA-PFP), which has a similar alkylammonium chain to the surfactants. Mixing metal salt, 8-HQS and HTMA-PFP in the presence of a nonionic surfactant leads to the formation of a metal complex/CPE supramolecular assembly between the conjugated polyelectrolyte and the metal/8-HQS complex, as demonstrated by electronic energy transfer. The potential of these systems in sensing, light harvesting, and electron injection/transport layers in organic semiconductor devices is discussed.

6.
Dalton Trans ; 44(44): 19076-89, 2015 Nov 28.
Article in English | MEDLINE | ID: mdl-26498366

ABSTRACT

Multinuclear ((1)H, (13)C, (95)Mo and (183)W) NMR spectroscopy, combined with DFT calculations, provides detailed information on the complexation between the Mo(VI) and W(VI) oxoions and 8-hydroxyquinoline-5-sulfonate (8-HQS) in aqueous solution. Over the concentration region studied, Mo(VI) and W(VI) oxoions form three homologous complexes with 8-HQS in water in the pH range 2-8. Two of these, detected at pH < 6, are mononuclear 1 : 2 (metal : ligand) isomers, with the metal centre (MO2(2+)) coordinated to two 8-HQS ligands. An additional complex, dominant at slightly higher pH values (5-8) for solutions with a 1 : 1 metal : ligand molar ratio, has a binuclear M2O5(2+) centre coordinated to two 8-HQS ligands. The two metal atoms are bridged by three oxygen atoms, two coming from 8-HQS, together with the M-O-M bridge of the bimetallic centre. We show that the long-range exchange corrected BOP functional with local response dispersion (LCBOPLRD), together with explicit solvent molecules, leads to geometries that readily converge to equilibrium structures having realistic bridging O8-HQS-M bonds. Previous attempts to calculate the structures of such binuclear complexes using DFT with the B3LYP functional have failed due to difficulties in treating the weak interaction in these bridged structures. We believe that the LCBOPLRD method may be of more general application in theoretical studies in related binuclear metal complexes. UV/visible absorption and luminescence spectra of all the complexes have also been recorded. The complex between Mo(vi) and 8-HQS is only weakly luminescent, in contrast to what has been observed with this ligand and many other metal ions. We suggest that this is due to the presence of low-lying ligand-to-metal charge transfer (LMCT) states close to the emitting ligand-based level which quench the emission. However, with W(VI), DFT calculations show that the LMCT states are now much higher in energy than the ligand based levels, leading to a marked increase in fluorescence.


Subject(s)
Molybdenum/chemistry , Oxyquinoline/analogs & derivatives , Tungsten/chemistry , Coordination Complexes/chemistry , Fluorescence , Hydrogen-Ion Concentration , Luminescence , Magnetic Resonance Spectroscopy , Models, Molecular , Oxyquinoline/chemistry , Photochemical Processes , Solutions , Solvents , Spectrophotometry, Ultraviolet
7.
Dalton Trans ; 44(25): 11491-503, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26030802

ABSTRACT

The kinetically inert chromium(III) tris-(8-hydroxyquinolinate), Crq3, has been synthesized, crystallized from 90% methanol-water, and characterized by MALDI-TOF mass spectrometry, thermogravimetry, FTIR, NMR spectroscopy, and X-ray powder diffraction. It is formed as a methanol solvate, but the solvent can be removed by heating. Large paramagnetic shifts and spectral broadening in (1)H NMR spectra indicate electron delocalization between the metal and the ligand. DFT calculations show it is present as the meridional isomer, with the HOMO largely based on one of the metal 3d orbitals and the LUMO essentially localized on the ligands. Cyclic voltammetry (CV) in acetonitrile solutions shows four oxidation peaks and two, less intense reduction waves on the first scan. The HOMO energy determined from the first oxidation peak is fairly close to that obtained by DFT, in agreement with this being mainly metal based. Although the number of peaks decreases on subsequent CV scans, the complex shows markedly enhanced electrochemical stability compared with aluminium(III) tris-(8-hydroxyquinolinate). Solution UV/visible absorption and solid diffuse reflectance spectra have a weak, long wavelength band, assigned to the metal based d-d transition, in addition to the normal, ligand based bands seen in metal quinolates. The energy of the lowest energy band is identical to the HOMO-LUMO separation obtained by cyclic voltammetry, in agreement with the above description. The compound is only weakly luminescent, in contrast to many other metal quinolates, due to the lowest energy transition being metal rather than ligand based. The potential of this compound as an electron transporting/hole blocking layer in optoelectronic devices is indicated.

8.
Int J Pharm ; 479(2): 306-11, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25545796

ABSTRACT

Mutual diffusion coefficients, densities and viscosities are reported for aqueous solutions of ethambutol as its dihydrochloride (EMBDHC) at finite concentrations and at 298.15K. From these experimental results and by using the appropriate models (Stokes-Einstein and Hartley), the hydrodynamic radii Rh, the diffusion coefficient at infinitesimal concentration D(0) and the thermodynamic factors, FT, have been estimated, permitting us to have a better understanding of the transport behavior of ethambutol dihydrochloride in solution. Elucidation of lack of any possible drug-drug interactions in these systems was obtained by complementary (1)H nuclear magnetic resonance (NMR) spectroscopy data.


Subject(s)
Ethambutol/chemistry , Models, Chemical , Thermodynamics , Biological Transport , Diffusion , Drug Interactions , Hydrodynamics , Magnetic Resonance Spectroscopy , Pharmaceutical Solutions , Viscosity , Water
9.
Langmuir ; 29(47): 14429-37, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24175706

ABSTRACT

Complexation of isotactic, syndiotactic, and atactic poly(methacrylic acid), PMA, with trivalent lanthanide ions has been studied in water at a degree of neutralization 0.5. Metal ion binding is shown by quenching of cerium(III) fluorescence, enhancement of Tb(III) luminescence, and lanthanide-induced line broadening in the PMA (1)H NMR spectra. Comparison with lanthanide-acetate complexation suggests carboxylate binds in a bidentate fashion, while Ce(III) luminescence quenching suggests an ≈3:1 carboxylate:metal ion stoichiometry, corresponding to charge neutralization. The presence of both free and bound Ce(III) cations in PMA solutions is confirmed from luminescence decays. Studies of Tb(3+) luminescence lifetime in H2O and D2O solutions show complexation is accompanied by loss of 5-6 water molecules, indicating that each bidentate carboxylate replaces two coordinated water molecules. The behavior depends on pH and polyelectrolyte stereoregularity, and stronger binding is observed with isotactic polyelectrolyte. Binding of cetylpyridinium chloride, CPC, in these systems is studied by luminescence, NMR, and potentiometry. NMR and Tb(3+) luminescence lifetime studies show the strongest binding with the isotactic polymer. Binding of surfactant to poly(methacrylate) in the presence of lanthanides is noncooperative, i.e., it binds to the free sites; binding isotherms in the presence of lanthanides are shifted to higher free surfactant concentrations, compared with sodium ions, have lower slopes and show a clear two-step binding mechanism. While CPC readily replaces the Na(+) ions of poly(methacrylate) and binds very strongly (low critical association concentrations), exchange is much more difficult with the strongly bound trivalent lanthanide ions. Effects of tacticity are seen, with surfactant interacting most strongly with isotactic chains in the initial stages of binding, while in the final stages of binding the interaction is strongest with atactic poly(methacrylate).


Subject(s)
Cetylpyridinium/chemistry , Lanthanoid Series Elements/chemistry , Luminescence , Polymethacrylic Acids/chemistry , Thermodynamics , Binding Sites , Hydrogen-Ion Concentration , Ions/chemistry , Magnetic Resonance Spectroscopy , Stereoisomerism
10.
Dalton Trans ; 42(10): 3682-94, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23299787

ABSTRACT

Multinuclear ((1)H, (13)C and (71)Ga) magnetic resonance spectroscopy (1D and 2D), DFT calculations and luminescence techniques have been used to study 8-hydroxyquinoline-5-sulfonate (8-HQS) and its complexes with Ga(III) in aqueous solutions. The study combines the high sensitivity of luminescence techniques and the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to obtain a complete understanding of the complexation between the Ga(3+) ion and 8-HQS, and how this influences the luminescence behaviour. A full speciation study has been performed on this system and three complexes detected, with (metal : ligand) 1 : 1, 1 : 2 and 1 : 3 stoichiometries, the results being consistent with those previously found for the system Al(III)-8-HQS. Complexation in these systems is relevant to their potential biomedical, sensing and optoelectronic applications. On binding to Ga(III), a marked increase is seen in the intensity of the 8-HQS fluorescence band, which is accompanied by changes in the absorption spectra. These support the use of 8-HQS as a sensitive fluorescent sensor to detect Ga(3+) metal ions in surface waters, biological fluids, etc., and its metal complexes as an emitting or charge transport layer in light emitting devices. However, the fluorescence quantum yield of the Ga(III)-8-HQS 1 : 3 complex is about 35% of that of the corresponding system with Al(III). Although this may be due in part to a heavy atom effect favouring S(1)→ T(1) intersystem crossing with Ga(3+), this does not agree with transient absorption measurements on the triplet state yield, which is lower with the Ga(III) system than with Al(III). Instead, it is suggested that photolabilisation of ligand exchange plays a major role in nonradiative decay of the excited state and that this is more efficient with the Ga(3+) complex. Based on these results, suggestions are made of ways of enhancing fluorescence intensity in metal complexes with 8-HQS by inhibiting ligand exchange using surfactant complexation for applications in either sensing or optoelectronics.


Subject(s)
Coordination Complexes/chemistry , Gallium/chemistry , Oxyquinoline/analogs & derivatives , Gallium/analysis , Ligands , Molecular Conformation , Oxyquinoline/chemistry , Quantum Theory , Spectrophotometry, Ultraviolet , Thermodynamics , Water Pollutants, Chemical/analysis
11.
Dalton Trans ; 41(40): 12478-89, 2012 Oct 28.
Article in English | MEDLINE | ID: mdl-22955198

ABSTRACT

Multinuclear ((1)H, (13)C and (27)Al) magnetic resonance spectroscopy (1D and 2D), DFT calculations and fluorescence have been used to study the complexation of 8-hydroxyquinoline-5-sulfonate (8-HQS) with Al(III). The study combines the high sensitivity of luminescence techniques, the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to provide a detailed understanding of the complexation between the Al(3+) ion and 8-HQS. A full speciation study has been performed and over the concentration region studied, the Al(3+) ion forms complexes with 8-HQS in an aqueous solution in the pH range 2-6. At higher pH, the extensive hydrolysis of the metal limits complexation. Using Job's method, three complexes were detected, with 1 : 1, 1 : 2 and 1 : 3 (metal : ligand) stoichiometries. These results are in agreement with those previously reported using potentiometric and electrochemical techniques. The geometries of the complexes are proposed based on the combination of NMR results with optimized DFT calculations. All the complexes in aqueous solutions at 25 °C are mononuclear species, and have an approximately octahedral geometry with the metal coordinated to one molecule of 8-HQS and four molecules of water (1 : 1 complex), two molecules of 8-HQS and two molecules of water mutually cis (1 : 2 complex), and to three molecules of 8-HQS in non-symmetrical arrangement (mer-isomer), for the 1 : 3 (metal : ligand) complex. On binding to Al(III), 8-HQS shows a more marked fluorescence than the weakly fluorescent free ligand. In addition, as previously noted, there are marked changes in the absorption spectra, which support the use of 8-HQS as a sensitive optical sensor to detect Al(3+) metal ions in surface waters and biological fluids. These complexes also show potential for applications in organic light emitting diodes (OLEDs).


Subject(s)
Aluminum/chemistry , Coordination Complexes/chemistry , Oxyquinoline/analogs & derivatives , Luminescence , Magnetic Resonance Spectroscopy , Oxyquinoline/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
12.
Phys Chem Chem Phys ; 14(22): 7950-3, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22569828

ABSTRACT

Much stronger binding is seen in aqueous solutions between the anionic polyelectrolyte potassium poly(vinyl sulfate) and the substitution labile aluminium(III) than with the kinetically inert chromium(III). This strongly supports the idea that entropy driven water loss from the hydration sphere of the metal ion plays a major role in driving binding of the trivalent metal ion to the polyelectrolyte.


Subject(s)
Aluminum/chemistry , Chromium/chemistry , Polyvinyls/chemistry , Models, Molecular , Molecular Conformation
13.
Dalton Trans ; 40(17): 4374-83, 2011 May 07.
Article in English | MEDLINE | ID: mdl-21327241

ABSTRACT

In this perspective we will discuss recent results on structural aspects of peroxocomplexes of transition metals having the d(0) configuration (V(V), Mo(VI), W(VI)), and show how these may be related to the reactivity of these species in both chemical and biological systems. In addition, we will consider the relevance of structural properties to their involvement as important intermediates in industrial and enzymatic catalysis. These will be related to the behaviour of peroxocomplexes of other diamagnetic transition metals, such as those with d(8) (Pd(II), Pt(II)) configurations.


Subject(s)
Coordination Complexes/chemistry , Molybdenum/chemistry , Tungsten Compounds/chemistry , Vanadates/chemistry , Catalysis , Crystallography, X-Ray , Molecular Conformation , Oxidation-Reduction
14.
Dalton Trans ; (44): 9735-45, 2009 Nov 28.
Article in English | MEDLINE | ID: mdl-19885519

ABSTRACT

The DFT B3LYP/SBKJC method has been used to calculate the gas-phase optimized geometries of the glycolate oxoperoxo vanadium(V) complexes [V(2)O(2)(OO)(2)(gly)(2)](2-), [V(2)O(3)(OO)(gly)(2)](2-) and [VO(OO)(gly)(H(2)O)](-). The (51)V, (17)O, (13)C and (1)H chemical shifts have been calculated for the theoretical geometries in all-electron DFT calculations at the UDFT-IGLO-PW91 level and have been subsequently compared with the experimental chemical shifts in solution. In spite of being applied to the isolated molecules, the calculations allowed satisfactory reproduction of the multinuclear NMR solution chemical shifts of the complexes, suggesting that the theoretical structures are probably close to those in solution. The effects of structural changes on the (51)V and (17)O NMR chemical shifts have been analysed using the referred computational methodologies for one of the glycolate complexes and for several small molecules taken as models. These calculations showed that structural modifications far from the metal nucleus do not significantly affect the metal chemical shift. This finding explains why it is possible to establish reference scales that correlate the type of complex (type of metal centre associated with a certain type of ligand) with its typical region of metal chemical shifts. It has also been found that the V[double bond, length as m-dash]O bond length is the dominant geometrical parameter determining both delta(51)V and the oxo delta(17)O in this kind of complex.


Subject(s)
Glycolates/chemistry , Organometallic Compounds/chemistry , Vanadium/chemistry , Ligands , Magnetic Resonance Spectroscopy
15.
Dalton Trans ; (43): 9616-24, 2009 Nov 21.
Article in English | MEDLINE | ID: mdl-19859617

ABSTRACT

Multinuclear ((1)H, (13)C, (17)O, (31)P, (95)Mo, (183)W) magnetic resonance spectroscopy (1D and 2D) has been used to study the complexation of molybdate(VI) and tungstate(VI) with 3-phospho-D-glyceric and 2-phospho-D-glyceric acids. 3-Phospho-D-glyceric acid forms four and five complexes, respectively, with molybdate and tungstate. These have MO(2)(2+) centres, and involve the carboxylate and the adjacent OH groups. Two isomeric 1:2 (metal-ligand) complexes are detected, in addition to one mononuclear species having MO(3) centres and involving the ligand in a tridentate chelation and a dominant 12:4 species with both tungstate(VI) and molybdate(VI). The dominant 12:4 species can be seen as two 1:2 complexes bound together in a ring through two diphosphometalate moieties, derived from heptamolybdate or heptatungstate, respectively, by inclusion of two phosphate groups from the ligands. Tungstate is also able to form an additional 2:1 tridentate species. 2-Phospho-D-glyceric acid does not interact with tungstate but is able to form one phosphomolybdate species with molybdate, which can be regarded as a heptamolybdate derivative. Density functional theory (DFT) calculations were performed for 1:2 complexes, including calculations on the relative energies of the 1:2 complexes detected in related systems, to validate previously proposed structures. The results are compared with those obtained from multinuclear NMR spectroscopy.


Subject(s)
Glyceric Acids/chemistry , Molybdenum/chemistry , Organometallic Compounds/chemistry , Quantum Theory , Tungsten/chemistry , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation
16.
J Phys Chem B ; 113(35): 11808-21, 2009 Sep 03.
Article in English | MEDLINE | ID: mdl-19663434

ABSTRACT

Relationships have been obtained between intermonomer torsional angle and NMR chemical shifts ((1)H and (13)C) for isolated chains of two of the most important poly(9,9-dialkylfluorenes), poly[9,9-bis(2-ethylhexyl)fluorene-2,7-diyl] (PF2/6) and the copolymer poly(9,9-dioctylfluorene-co-[2,1,3]benzothiadiazole-4,7-diyl) (F8BT), using DFT calculations. The correlations provide a model for NMR spectral data interpretation and the basis for analysis of conformational changes in poly(9,9-dialkylfluorene-2,7-diyl)s. The correlations obtained for PF2/6 indicate that the (13)C chemical shifts of the aromatic carbons close to the intermonomer connection (C1, C2, and C3) have minimum values at planar conformations (0 degrees and 180 degrees ) and maximum values at 90 degrees conformations. In contrast, the (1)H chemical shifts of the corresponding aromatic ortho protons (Ha and Hb) are greatest for planar conformations, and the minimum values are seen for 90 degrees conformations. For the F8BT copolymer, similar relationships are observed for the (1)H (Ha, Hb, and Hc) aromatic shifts. Considering the aromatic carbons of F8BT, the behavior of C2, C4, C5, and C6 is similar to that found for the PF2/6 carbons. However, C1 and C3 of the fluorene moiety behave differently with varying torsion angle. These are in close proximity to the fluorene-benzothiadiazole linkage and are markedly affected by interactions with the thiadiazole unit such that delta(C1) is a maximum for 180 degrees and a minimum for 0 degrees , whereas delta(C3) is a maximum for 0 degrees and minimum for 180 degrees. We have studied the (1)H and (13)C spectra of the two polymers at temperatures between -50 degrees C and +65 degrees C. The observed changes to higher or lower frequency in the aromatic resonances were analyzed using these theoretical relationships. Fluorescence studies on PF2/6 in chloroform solution suggest there are no significant interchain interactions under these conditions. This is supported by variable-temperature NMR results. Polymer-solvent and polymer intramolecular interactions were found to be present and influence all of the alkylic and one of the aromatic (1)H resonances (Hb). The detailed attribution of the (1)H and (13)C NMR spectra of the two polymers was made prior to the establishment of the relationships between torsion angle and NMR chemical shifts. This was carried out through DFT calculation of the (1)H and (13)C shielding constants of the monomers, coupled with distortionless enhancement by polarization transfer and heteronuclear correlation NMR spectra. Several DFT levels of calculation were tested for both optimization of structures and shielding constants calculation. The B3LYP/6-31G(d,p) method was found to perform well in both cases.


Subject(s)
Fluorenes/chemistry , Magnetic Resonance Spectroscopy/methods , Algorithms , Chloroform , Models, Chemical , Models, Molecular , Models, Theoretical , Molecular Conformation , Polymers/chemistry , Solvents/chemistry , Spectrometry, Fluorescence/methods , Temperature
17.
Inorg Chem ; 47(16): 7317-26, 2008 Aug 18.
Article in English | MEDLINE | ID: mdl-18627141

ABSTRACT

Various combinations of density functionals and pseudopotentials with associated valence basis-sets are compared for reproducing the known solid-state structure of [V 2O 2(OO) 2 l-lact 2] (2-) cis . Gas-phase optimizations at the B3LYP/SBKJC level have been found to provide a structure that is close to that seen in the solid state by X-ray diffraction. Although this may result in part from error compensation, this optimized structure allowed satisfactory reproduction of solution multinuclear NMR chemical shifts of the complex in all-electron DFT-IGLO calculations (UDFT-IGLO-PW91 level), suggesting that it is probably close to that found in solution. This combination of approaches has subsequently been used to optimize the structures of the vanadium oxoperoxo complexes [V 2O 3(OO) l-lact 2] (2-) cis , [V 2O 3(OO) l-lact 2] (2-) trans , and [VO(OO)( l-lact)(H 2O)] (-) cis . The (1)H, (13)C, (51)V, and (17)O NMR chemical shifts for these complexes have been calculated and compared with the experimental solution chemical shifts. Excellent agreement is seen with the (13)C chemical shifts, while somewhat inferior agreement is found for (1)H shifts. The (51)V and (17)O chemical shifts of the dioxo vanadium centers are well reproduced, with differences between theoretical and experimental shifts ranging from 22.9 to 35.6 ppm and from 25.1 to 43.7 ppm, respectively. Inferior agreement is found for oxoperoxo vanadium centers, with differences varying from 137.3 to 175.0 ppm for (51)V shifts and from 148.7 to 167.0 ppm for (17)O(oxo) shifts. The larger errors are likely to be due to overestimated peroxo O-O distances. The chosen methodology is able to predict and analyze a number of interesting structural features for vanadium(V) oxoperoxocomplexes of alpha-hydroxycarboxylic acids.


Subject(s)
Lactic Acid/chemistry , Organometallic Compounds/chemistry , Vanadium/chemistry , Carboxylic Acids/chemistry , Magnetic Resonance Spectroscopy , Quantum Theory , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...