Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 6135, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35414093

ABSTRACT

Optical homodyne detection is widely adopted in continuous-variable quantum key distribution for high-rate field measurement quadratures. Besides that, those detection schemes have been being implemented for single-photon statistics characterization in the field of quantum tomography. In this work, we propose a discrete-variable quantum key distribution (DV-QKD) implementation that combines the use of phase modulators for high-speed state of polarization (SOP) generation, with a conjugate homodyne detection scheme which enables the deployment of high speed QKD systems. The channel discretization relies on the application of a detection threshold that allows to map the measured voltages as a click or no-click. Our scheme relies also on the use of a time-multiplexed pilot tone-quantum signal architecture which enables the use of a Bob locally generated local oscillator and opens the door to an effective polarization drift compensation scheme. Besides that, our results shows that for higher detection threshold values we obtain a very low quantum bit error rate (QBER) on the sifted key. Nevertheless, due to huge number of discarded qubits the obtained secure key length abruptly decreases. From our results, we observe that optimizing the detection threshold and considering a system operating at 500 MHz symbol generation clock, a secure key rate of approximately 46.9 Mbps, with a sifted QBER of  [Formula: see text] over 40 km of optical fiber. This considering the error correction and privacy amplification steps necessary to obtain a final secure key.

2.
Opt Express ; 30(5): 6907-6920, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299465

ABSTRACT

Long-term quantum key distribution (QKD) using polarization encoding requires a random drift compensation method. We propose a method to compensate any state of polarization based on the quantum bit error rate (QBER) of two states from two non-orthogonal mutually unbiased bases. The proposed method does not require dedicated equipment, and through a simple but highly efficient feedback loop it compensates the polarization random drift suffered by photons while transmitted over the optical fiber quantum channel. A QBER lower than 2% was observed even considering imperfect single photon detectors. Besides, we verify a 82% secret key rate generation improvement in a finite-key size BB84 implementation for a 40 km fiber-optics quantum channel.

3.
Opt Express ; 28(4): 5035-5049, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32121732

ABSTRACT

A quantum bit error rate (QBER) based algorithm for polarization random drift compensation is proposed. For a transmission window of 8 ms, for instance in aerial fiber installations, the algorithm overhead is below 1%. In an extreme turbulent situation, where the transmission window is as shorter as 0.8 ms, the overhead is still below 10%. Besides being able to operate smoothly, even in a very extreme situation, the algorithm overhead is also insensitive to the length of the communication system. It is upper layer protocol agnostic, and it is based on the mapping of the QBER on the Poincaré sphere. The algorithm finds the polarization reversal operator, which results in much lower overhead contrary to the blind methods currently used. The algorithm reverts the polarization random drift performing two QBER estimations and applying three rotations, at most. The uncertainty on the two QBER estimations defines an area over the sphere surface that is related with upper-layer protocols QBER threshold.

SELECTION OF CITATIONS
SEARCH DETAIL
...