Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Clin Chem ; 68(9): 1134-1150, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35934949

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is an immune-mediated central nervous system (CNS) inflammatory demyelinating disease in which analysis of clinical presentation, imaging studies, and laboratory tests aid in diagnosis. CONTENT: This review discusses laboratory tests ordered to rule out and rule in MS, such as the traditional measurement of cerebrospinal fluid (CSF) IgG index and oligoclonal bands. Biomarkers discovered in the past 2 decades, such as aquaporin-4 (AQP4) antibodies and myelin oligodendrocyte glycoprotein (MOG) antibodies, have been incorporated into clinical practice in the diagnosis of disorders referred to as MS mimics. The importance of test selection, assay methodology, optimal sample for testing, and diagnostic utility of these biomarkers is reviewed. Other laboratory testing that can aid in the differentiation between MS and these biomarker-defined CNS demyelinating diseases is described. There is a focus on emerging biomarkers such as the use of kappa immunoglobulin free light chain concentration in CSF and kappa CSF index measurement as an alternative to oligoclonal bands which has a potential for an improvement in laboratory workflows. Finally, the role of biomarkers of disease activity and prognosis are discussed, including neurofilament light chain, glial fibrillary acidic protein, and myelin basic protein. Future perspectives with improved laboratory testing tools and discovery of additional biomarkers are provided. SUMMARY: Laboratory testing for demyelinating disorders using CSF and serum are routine practices that can benefit from an update, as novel biomarker-defined entities have reduced the potential for MS misdiagnosis, and CSF/serum biomarkers reinstated in the diagnostic criteria of MS.


Subject(s)
Aquaporins , Multiple Sclerosis , Autoantibodies , Biomarkers , Glial Fibrillary Acidic Protein , Humans , Immunoglobulin G , Immunoglobulin kappa-Chains , Multiple Sclerosis/diagnosis , Myelin Basic Protein , Myelin-Oligodendrocyte Glycoprotein , Oligoclonal Bands/cerebrospinal fluid
3.
J Clin Endocrinol Metab ; 106(4): e1631-e1646, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33382888

ABSTRACT

PURPOSE: Skeletal muscle is the primary site for insulin-stimulated glucose disposal, and muscle insulin resistance is central to abnormal glucose metabolism in obesity. Whether muscle insulin signaling to the level of Akt/AS160 is intact in insulin-resistant obese humans is controversial. METHODS: We defined a linear range of insulin-stimulated systemic and leg glucose uptake in 14 obese and 14 nonobese volunteers using a 2-step insulin clamp (Protocol 1) and then examined the obesity-related defects in muscle insulin action in 16 nonobese and 25 obese male and female volunteers matched for fitness using a 1-step, hyperinsulinemic, euglycemic clamp coupled with muscle biopsies (Protocol 2). RESULTS: Insulin-stimulated glucose disposal (Si) was reduced by > 60% (P < 0.0001) in the obese group in Protocol 2; however, the phosphorylation of Akt and its downstream effector AS160 were not different between nonobese and obese groups. The increase in phosphorylation of Akt2 in response to insulin was positively correlated with Si for both the nonobese (r = 0.53, P = 0.03) and the obese (r = 0.55, P = 0.01) groups. Total muscle GLUT4 protein was 17% less (P < 0.05) in obese subjects. CONCLUSIONS: We suggest that reduced muscle glucose uptake in obesity is not due to defects in the insulin signaling pathway at the level of Akt/AS160, which suggests there remain significant gaps in our knowledge of muscle insulin resistance in obesity. Our data imply that models of acute lipotoxicity do not replicate the pathophysiology of obesity.


Subject(s)
Glucose/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , Obesity/metabolism , Adult , Female , Humans , Male , Signal Transduction
4.
Clin Biochem ; 87: 93-99, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33188774

ABSTRACT

OBJECTIVES: Bovine alkaline phosphatase (BALP) mediated interference is a potential issue in the Beckman Access unconjugated estriol (uE3) assay. As the uE3 assay is a component of second trimester maternal serum screening characterizing this interference is essential for delivering accurate trisomy 18 and trisomy 21 risks. DESIGN AND METHODS: Residual serum samples (n = 517) were measured by two different lots of uE3 assay. Scavenger BALP (sBALP) was added to all samples to remove potential BALP dependent interference and assessed using both lots of uE3 reagent. RESULTS: BALP mediated interference was observed in similar frequency in both lots of reagent (~3%), although the patterns of positive and negative interference differed between the lots. Pretreatment with sBALP improved lot-to-lot comparison. The presence of BALP related interference was not related to the concentration of endogenous human alkaline phosphatase. The use of polyethylene glycol and sBALP treatment appeared to mitigate BALP mediated interference equally well, and resulted in concordance in measured uE3 concentrations between reagent lots. Additionally, heterophile antibody interference was observed in two samples affected with BALP interference, and the heterophile antibody interference was resolved by both PEG and heterophile antibody blocking reagent treatment, but not sBALP treatment. While the maternal screen numeric risk for affected samples changed, the risk classification changed from a negative to positive screen in two samples. CONCLUSIONS: Interference in the uE3 assay has the potential to affect maternal serum risk calculations in different reagent lots, and pretreatment of samples with scavenger BALP or PEG should be considered in cases of unexplained uE3 concentrations.


Subject(s)
Alkaline Phosphatase/chemistry , Biomarkers/blood , Diagnostic Tests, Routine/standards , Down Syndrome/diagnosis , Estriol/blood , Maternal Serum Screening Tests/standards , Prenatal Diagnosis/methods , Alkaline Phosphatase/metabolism , Animals , Cattle , Down Syndrome/blood , Female , Humans , Pregnancy , Pregnancy Trimester, Second
5.
Exp Physiol ; 105(5): 809-818, 2020 05.
Article in English | MEDLINE | ID: mdl-32105387

ABSTRACT

NEW FINDINGS: What is the central question of this study? How do locomotor muscle metabo- and mechanoreceptor expression compare in heart failure patients and controls? Do relationships exist between the protein expression and cardiopulmonary responses during exercise with locomotor muscle neural afferent feedback inhibition? What is the main finding and its importance? Heart failure patients exhibited greater protein expression of transient receptor potential vanilloid type 1 and cyclooxygenase-2 than controls. These findings are important as they identify receptors that may underlie the augmented locomotor muscle neural afferent feedback in heart failure. ABSTRACT: Heart failure patients with reduced ejection fraction (HFrEF) exhibit abnormal locomotor group III/IV afferent feedback during exercise; however, the underlying mechanisms are unclear. Therefore, the purpose of this study was to determine (1) metabo- and mechanoreceptor expression in HFrEF and controls and (2) relationships between receptor expression and changes in cardiopulmonary responses with afferent inhibition. Ten controls and six HFrEF performed 5 min of cycling exercise at 65% peak workload with lumbar intrathecal fentanyl (FENT) or placebo (PLA). Arterial blood pressure and catecholamines were measured via radial artery catheter. A vastus lateralis muscle biopsy was performed to quantify cyclooxygenase-2 (COX-2), purinergic 2X3 (P2X3 ), transient receptor potential vanilloid type 1 (TRPV 1), acid-sensing ion channel 3 (ASIC3 ), Piezo 1 and Piezo 2 protein expression. TRPV 1 and COX-2 protein expression was greater in HFrEF than controls (both P < 0.04), while P2X3 , ASIC3 , and Piezo 1 and 2 were not different between groups (all P > 0.16). In all participants, COX-2 protein expression was related to the percentage change in ventilation (r = -0.66) and mean arterial pressure (MAP) (r = -0.82) (both P < 0.01) with FENT (relative to PLA) during exercise. In controls, TRPV 1 protein expression was related to the percentage change in systolic blood pressure (r = -0.77, P = 0.02) and MAP (r = -0.72, P = 0.03) with FENT (relative to PLA) during exercise. TRPV 1 and COX-2 protein levels are elevated in HFrEF compared to controls. These findings suggest that the elevated TRPV 1 and COX-2 expression may contribute to the exaggerated locomotor muscle afferent feedback during cycling exercise in HFrEF.


Subject(s)
Afferent Pathways , Exercise , Heart Failure/physiopathology , Mechanoreceptors/metabolism , Quadriceps Muscle/physiology , Acid Sensing Ion Channels , Aged , Case-Control Studies , Cyclooxygenase 2 , Female , Fentanyl/administration & dosage , Humans , Ion Channels , Male , Middle Aged , Receptors, Purinergic P2X3 , TRPV Cation Channels
SELECTION OF CITATIONS
SEARCH DETAIL
...