Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(16): 15883-15892, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37556765

ABSTRACT

The layered transition-metal dichalcogenide material 1T-TaS2 possesses successive phase transitions upon cooling, resulting in strong electron-electron correlation effects and the formation of charge density waves (CDWs). Recently, a dimerized double-layer stacking configuration was shown to form a Peierls-like instability in the electronic structure. To date, no direct evidence for this double-layer stacking configuration using optical techniques has been reported, in particular through Raman spectroscopy. Here, we employ a multiple excitation and polarized Raman spectroscopy to resolve the behavior of phonons and electron-phonon interactions in the commensurate CDW lattice phase of dimerized 1T-TaS2. We observe a distinct behavior from what is predicted for a single layer and probe a richer number of phonon modes that are compatible with the formation of double-layer units (layer dimerization). The multiple-excitation results show a selective coupling of each Raman-active phonon with specific electronic transitions hidden in the optical spectra of 1T-TaS2, suggesting that selectivity in the electron-phonon coupling must also play a role in the CDW order of 1T-TaS2.

2.
ACS Nano ; 15(6): 9658-9669, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-33754710

ABSTRACT

Atomically thin 2D materials provide an opportunity to investigate the atomic-scale details of defects introduced by particle irradiation. Once the atomic configuration of defects and their spatial distribution are revealed, the details of the mesoscopic phenomena can be unveiled. In this work, we created atomically small defects by controlled irradiation of gallium ions with doses ranging from 4.94 × 1012 to 4.00 × 1014 ions/cm2 on monolayer molybdenum disulfide (MoS2) crystals. The optical signatures of defects, such as the evolution of defect-activated LA-bands and a broadening of the first-order (E' and A'1) modes, can be studied by Raman spectroscopy. High-resolution scanning transmission electron microscopy (HR-STEM) analysis revealed that most defects are vacancies of few-molybdenum atoms with surrounding sulfur atoms (VxMo+yS) at a low ion dose. When increasing the ion dose, the atomic vacancies merge and form nanometer-sized holes. Utilizing HR-STEM and image analysis, we propose the estimation of the finite crystal length (Lfc) via the careful quantification of 0D defects in 2D systems through the formula Lfc = 4.41/ηion, where ηion corresponds to the ion dose. Combining HR-STEM and Raman spectroscopy, the formula to calculate Lfc from Raman features, I(LA)/I(A'1) = 5.09/Lfc2, is obtained. We have also demonstrated an effective route to healing the ion irradiation-induced atomic vacancies by annealing defective MoS2 in a hydrogen disulfide (H2S) atmosphere. The H2S annealing improved the crystal quality of MoS2 with Lfc greater than the calculated size of the A exciton wave function, which leads to a partial recovery of the photoluminescence signal after its quenching by ion irradiation.

3.
J Enzyme Inhib Med Chem ; 35(1): 639-649, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32048531

ABSTRACT

Leishmaniasis is a neglected disease caused by the protozoa Leishmania ssp. Environmental differences found by the parasites in the vector and the host are translated into cellular stress, leading to the production of heat shock proteins (Hsp). These are molecular chaperones involved in the folding of nascent proteins as well as in the regulation of gene expression, signalling events and proteostasis. Since Leishmania spp. use Hsp90 to trigger important transitions between their different stages of the life cycle, this protein family becomes a profitable target in anti-parasite drug discovery. In this work, we implemented a multidisciplinary strategy coupling molecular modelling with in vitro assays to identify small molecules able to inhibit Hsp90 from L. braziliensis (LbHsp90). Overall, we identified some compounds able to kill the promastigote form of the L. braziliensis, and to inhibit LbHsp90 ATPase activity.


Subject(s)
Antiprotozoal Agents/pharmacology , Enzyme Inhibitors/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Leishmania braziliensis/drug effects , Molecular Chaperones/pharmacology , Small Molecule Libraries/pharmacology , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/metabolism , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Dose-Response Relationship, Drug , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , HSP90 Heat-Shock Proteins/metabolism , Leishmania braziliensis/chemistry , Models, Molecular , Molecular Chaperones/chemical synthesis , Molecular Chaperones/chemistry , Molecular Structure , Parasitic Sensitivity Tests , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
4.
J Phys Condens Matter ; 32(19): 19LT01, 2020 May 08.
Article in English | MEDLINE | ID: mdl-31945758

ABSTRACT

Determining the role of defects in materials can be an important task both for the fundamental understanding of their influence on material properties and for future applications. In this work, we studied the influence of defects on the second harmonic generation (SHG) in hexagonal boron nitride (h-BN). We characterized the sample by photoluminescence imaging and spectroscopy, showing strong and sharp photoluminescence emission at visible range from h-BN flakes due to single defect states. By doing second harmonic imaging, we found strong emission from the h-BN flakes that correlates spatially with the photoluminescence imaging. By doing polarization-resolved SHG, we found deviations from the expected polarization pattern in pristine h-BN samples. We also characterized the nonlinear optical susceptibility of h-BN with defects with a value of one order of magnitude larger than for pristine h-BN, which highlights the role of defects in the efficiency of SHG. Therefore defect engineering could be used as a potential tool for nonlinear optical signal enhancement.

5.
RSC Adv ; 9(67): 39488-39494, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-35540654

ABSTRACT

Researching optical effects in nanowires may require a high pump intensity which under ambient conditions can degrade nanowires due to thermal oxidation. In this work we investigated the photodegradation of a single Si-doped GaAs nanowire by laser heating in air. To understand the changes that occurred on the nanowire we carried out Raman spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and photoluminescence spectroscopy in laser damaged regions as well as in non-affected ones. From Raman Stokes and anti-Stokes measurements we estimated the local temperature that the oxidation process of the nanowire (NW) surface starts at as 661 K, resulting in two new Raman modes at 200 cm-1 and 259 cm-1. Scanning electron microscopy and energy dispersive X-ray spectroscopy measurements showed a significant loss of arsenic in the oxidized regions, but no erosion of the nanowire. Micro-photoluminescence measurements showed the near-band-edge emission of GaAs along the nanowire, as well as a new emission band at 755 nm corresponding to polycrystalline ß-Ga2O3 formation. Our results also indicate that neither amorphous As nor crystalline As were deposited on the surface of the nanowire. Combining different experimental techniques, this study showed the formation of polycrystalline ß-Ga2O3 by oxidation of the nanowire surface and the limits for performing spectroscopic investigations on individual GaAs NWs under ambient air conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...