Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Cells Syst (Seoul) ; 28(1): 340-352, 2024.
Article in English | MEDLINE | ID: mdl-39011371

ABSTRACT

Preventing disease and maintaining the health of the elderly are crucial goals for an aging population, with obesity and immune function restoration being of paramount importance. Obesity, particularly visceral obesity characterized by excessive fat accumulation around the abdominal organs, is linked to chronic conditions such as diabetes, hypertension, cardiovascular diseases, and immune dysfunction. Globally, obesity is considered a disease, prompting significant research interest in its treatment. Therefore, it is essential to explore potential therapeutic and preventive strategies to address obesity and the decline in immune function brought about by aging. Tenebrio molitor larvae (TML), commonly known as 'mealworms,' are rich in unsaturated fatty acids, including oleic and linoleic acids, and essential amino acids, such as isoleucine and tyrosine. In this study, we aimed to investigate the effects of the consumption of TML oil and mealworm fermented extract (MWF-1) on obesity and immunological changes in aged obese mice. Our data showed reduced body fat in 23-week-old C57BL/6 mice fed processed TML products for 6 weeks. Additionally, the characteristically high levels of serum triglycerides decreased by treating with TML oil. The immune responsiveness results confirmed an increase in B cells by treating with MWF-1, while cytokine levels (interferon-gamma, tumor necrosis factor-alpha, interleukin-2, and -6) were restored to levels similar to young mice. These results suggest that TML oil and MWF-1 are promising dietary supplements for addressing obesity and restoring immune function.

2.
Int Immunopharmacol ; 137: 112470, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38908085

ABSTRACT

BACKGROUND: The surplus cytokines remaining after use in the early stages of the inflammatory response stimulate immune cells even after the response is over, causing a secondary inflammatory response and ultimately damaging the host, which is called a cytokine storm. Inhibiting heat shock protein 90 (Hsp90), which has recently been shown to play an important role in regulating inflammation in various cell types, may help control excessive inflammatory responses and cytokine storms. METHODS: We discovered an anti-inflammatory compound by measuring the inhibitory effect of CD86 expression on spleen DCs (sDCs) using the chemical compounds library of Hsp90 inhibitors. Subsequently, to select the hit compound, the production of cytokines and expression of surface molecules were measured on the bone marrow-derived DCs (BMDCs) and peritoneal macrophages. Then, we analyzed the response of antigen-specific Th1 cells. Finally, we confirmed the effect of the compound using acute lung injury (ALI) and delayed-type hypersensitivity (DTH) models. RESULTS: We identified Be01 as the hit compound, which reduced CD86 expression the most in sDCs. Treatment with Be01 decreased the production of pro-inflammatory cytokines (IL-6, TNF-α, and IL-1ß) in BMDC and peritoneal macrophages stimulated by LPS. Under the DTH model, Be01 treatment reduced ear swelling and pro-inflammatory cytokines in the spleen. Similarly, Be01 treatment in the ALI model decreased neutrophil infiltration and lower levels of secreted cytokines (IL-6, TNF-α). CONCLUSIONS: Reduction of CD80 and CD86 expression on DCs by Be01 indicates reduced secondary inflammatory response by Th1 cells, and reduced release of pro-inflammatory cytokines by peritoneal macrophages may initially control the cytokine storm.


Subject(s)
Anti-Inflammatory Agents , Cytokines , Dendritic Cells , HSP90 Heat-Shock Proteins , Macrophages, Peritoneal , Mice, Inbred C57BL , Animals , Dendritic Cells/drug effects , Dendritic Cells/immunology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mice , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Hypersensitivity, Delayed/drug therapy , Hypersensitivity, Delayed/immunology , B7-2 Antigen/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Cells, Cultured , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Th1 Cells/immunology , Th1 Cells/drug effects , Inflammation/drug therapy , Inflammation/immunology , Female , Disease Models, Animal , Spleen/immunology , Spleen/drug effects
3.
J Anim Sci Technol ; 65(5): 951-970, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37969342

ABSTRACT

This study utilized Italian ryegrass silage (IRGS) - based total mixed ration (TMR) as feedstuff and evaluated its effects on rumen fermentation, growth performance, blood parameters, and bacterial community in growing Hanwoo heifers. Twenty-seven Hanwoo heifers (body weight [BW], 225.11 ± 10.57 kg) were randomly allocated to three experimental diets. Heifers were fed 1 of 3 treatments as follows: TMR with oat, timothy, and alfalfa hay (CON), TMR with 19% of IRGS (L-IRGS), and TMR with 36% of IRGS (H-IRGS). Feeding high levels of IRGS (H-IRGS) and CON TMR to heifers resulted in a greater molar proportion of propionate in the rumen. The impact of different TMR diets on the BW, average daily gain, dry matter intake, and feed conversion ratio of Hanwoo heifers during the growing period did not differ (p > 0.05). Furthermore, the blood metabolites, total protein, albumin, aspartate aminotransferase, glucose, and total cholesterol of the heifers were not affected by the different TMR diets (p > 0.05). In terms of rumen bacterial community composition, 264 operational taxonomic units (OTUs) were observed across the three TMR diets with 240, 239, and 220 OTUs in CON, L-IRGS, and H-IRGS, respectively. IRGS-based diets increased the relative abundances of genera belonging to phylum Bacteroidetes but decreased the abundances of genus belonging to phylum Firmicutes compared with the control. Data showed that Bacteroidetes was the most dominant phylum, while Prevotella ruminicola was the dominant species across the three TMR groups. The relative abundance of Ruminococcus bromii in the rumen increased in heifers fed with high inclusion of IRGS in the TMR (H-IRGS TMR). The relative abundance of R. bromii in the rumen significantly increased when heifers were fed H-IRGS TMR while P. ruminicola increased in both L-IRGS and H-IRGS TMR groups. Results from the current study demonstrate that the inclusion of IRGS in the TMR is comparable with the TMR containing high-quality forage (CON). Thus, a high level of IRGS can be used as a replacement forage ingredient in TMR feeding and had a beneficial effect of possibly modulating the rumen bacterial community toward mainly propionate-producing microorganisms.

4.
Sci Rep ; 12(1): 20739, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36456638

ABSTRACT

The buffering capacity of buffer agents and their effects on in vitro and in vivo rumen fermentation characteristics, and bacterial composition of a high-concentrate fed Hanwoo steers were investigated in this study. Treatments were comprised of CON (no buffer added), BC0.3% (low buffering capacity, 0.3% buffer), BC0.5% (medium buffering capacity, 0.5% buffer), and BC0.9% (high buffering capacity, 0.9% buffer). Four Hanwoo steers in a 4 × 4 Latin square design were used for the in vivo trial to assess the effect of treatments. Results on in vitro experiment showed that buffering capacity, pH, and ammonia-nitrogen concentration (NH3-N) were significantly higher in BC0.9% and BC0.5% than the other treatments after 24 h incubation. Individual and total volatile fatty acids (VFA) concentration of CON were lowest compared to treatment groups. Meanwhile, in vivo experiment revealed that Bacteroidetes were dominant for all treatments followed by Firmicutes and Proteobacteria. The abundances of Barnesiella intestinihominis, Treponema porcinum, and Vibrio marisflavi were relatively highest under BC0.9%, Ruminoccocus bromii and Succiniclasticum ruminis under BC0.5%, and Bacteroides massiliensis under BC0.3%. The normalized data of relative abundance of observed OTUs' representative families have grouped the CON with BC0.3% in the same cluster, whereas BC0.5% and BC0.9% were clustered separately which indicates the effect of varying buffering capacity of buffer agents. Principal coordinate analysis (PCoA) on unweighted UniFrac distances revealed close similarity of bacterial community structures within and between treatments and control, in which BC0.9% and BC0.3% groups showed dispersed community distribution. Overall, increasing the buffering capacity by supplementation of BC0.5% and and BC0.9% buffer agents enhanced rumen fermentation characteristics and altered the rumen bacterial community, which could help prevent ruminal acidosis during a high-concentrate diet.


Subject(s)
Microbiota , Rumen , Humans , Animals , Fermentation , Proteobacteria , Firmicutes
5.
Front Microbiol ; 13: 804562, 2022.
Article in English | MEDLINE | ID: mdl-35295316

ABSTRACT

Heat stress (HS) in dairy cows causes considerable losses in the dairy industry worldwide due to reduced animal performance, increased cases of metabolic disorders, altered rumen microbiome, and other health problems. Cows subjected to HS showed decreased ruminal pH and acetate concentration and an increased concentration of ruminal lactate. Heat-stressed cows have an increased abundance of lactate-producing bacteria such as Streptococcus and unclassified Enterobacteriaceae, and soluble carbohydrate utilizers such as Ruminobacter, Treponema, and unclassified Bacteroidaceae. Cellulolytic bacteria, especially Fibrobacteres, increase during HS due to a high heat resistance. Actinobacteria and Acetobacter, both acetate-producing bacteria, decreased under HS conditions. Rumen fermentation functions, blood parameters, and metabolites are also affected by the physiological responses of the animal during HS. Isoleucine, methionine, myo-inositol, lactate, tryptophan, tyrosine, 1,5-anhydro-D-sorbitol, 3-phenylpropionic acid, urea, and valine decreased under these conditions. These responses affect feed consumption and production efficiency in milk yield, growth rate, and reproduction. At the cellular level, activation of heat shock transcription factor (HSF) (located throughout the nucleus and the cytoplasm) and increased expression of heat shock proteins (HSPs) are the usual responses to cope with homeostasis. HSP70 is the most abundant HSP family responsible for the environmental stress response, while HSF1 is essential for increasing cell temperature. The expression of bovine lymphocyte antigen and histocompatibility complex class II (DRB3) is downregulated during HS, while HSP90 beta I and HSP70 1A are upregulated. HS increases the expression of the cytosolic arginine sensor for mTORC1 subunits 1 and 2, phosphorylation of mammalian target of rapamycin and decreases the phosphorylation of Janus kinase-2 (a signal transducer and activator of transcription factor-5). These changes in physiology, metabolism, and microbiomes in heat-stressed dairy cows require urgent alleviation strategies. Establishing control measures to combat HS can be facilitated by elucidating mechanisms, including proper HS assessment, access to cooling facilities, special feeding and care, efficient water systems, and supplementation with vitamins, minerals, plant extracts, and probiotics. Understanding the relationship between HS and the rumen microbiome could contribute to the development of manipulation strategies to alleviate the influence of HS. This review comprehensively elaborates on the impact of HS in dairy cows and introduces different alleviation strategies to minimize HS.

6.
Animals (Basel) ; 11(3)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809588

ABSTRACT

Effects of changing diet on rumen fermentation parameters, bacterial community composition, and transcriptome profiles were determined in three rumen-cannulated Holstein Friesian cows using a 3 × 4 cross-over design. Treatments include HF-1 (first high-forage diet), HC-1 (first high-concentrate diet), HC-2 (succeeding high-concentrate diet), and HF-2 (second high-forage diet as a recovery period). Animal diets contained Klein grass and concentrate at ratios of 8:2, 2:8, 2:8, and 8:2 (two weeks each), respectively. Ammonia-nitrogen and individual and total volatile fatty acid concentrations were increased significantly during HC-1 and HC-2. Rumen species richness significantly increased for HF-1 and HF-2. Bacteroidetes were dominant for all treatments, while phylum Firmicutes significantly increased during the HC period. Prevotella, Erysipelothrix, and Galbibacter significantly differed between HF and HC diet periods. Ruminococcus abundance was lower during HF feeding and tended to increase during successive HC feeding periods. Prevotellaruminicola was the predominant species for all diets. The RNA sequence analysis revealed the keratin gene as differentially expressed during the HF diet, while carbonic-anhydrase I and S100 calcium-binding protein were expressed in the HC diet. Most of these genes were highly expressed for HC-1 and HC-2. These results suggested that ruminal bacterial community composition, transcriptome profile, and rumen fermentation characteristics were altered by the diet transitions in dairy cows.

7.
Front Microbiol ; 12: 601061, 2021.
Article in English | MEDLINE | ID: mdl-33868186

ABSTRACT

Previous studies have focused on the rumen microbiome and enteric methane (CH4) emissions in dairy cows, yet little is known about steers, especially steers of dairy breeds. In the present study, we comparatively examined the rumen microbiota, fermentation characteristics, and CH4 emissions from six non-cannulated Holstein (710.33 ± 43.02 kg) and six Jersey (559.67 ± 32.72 kg) steers. The steers were fed the same total mixed ration (TMR) for 30 days. After 25 days of adaptation to the diet, CH4 emissions were measured using GreenFeed for three consecutive days, and rumen fluid samples were collected on last day using stomach tubing before feeding (0 h) and 6 h after feeding. CH4 production (g/d/animal), CH4 yield (g/kg DMI), and CH4 intensity (g/kg BW0.75) were higher in the Jersey steers than in the Holstein steers. The lowest pH value was recorded at 6 h after feeding. The Jersey steers had lower rumen pH and a higher concentration of ammonia-nitrogen (NH3-N). The Jersey steers had a numerically higher molar proportion of acetate than the Holstein steers, but the opposite was true for that of propionate. Metataxonomic analysis of the rumen microbiota showed that the two breeds had similar species richness, Shannon, and inverse Simpson diversity indexes. Principal coordinates analysis showed that the overall rumen microbiota was different between the two breeds. Both breeds were dominated by Prevotella ruminicola, and its highest relative abundance was observed 6 h after feeding. The genera Ethanoligenens, Succinivibrio, and the species Ethanoligenens harbinense, Succinivibrio dextrinosolvens, Prevotella micans, Prevotella copri, Prevotella oris, Prevotella baroniae, and Treponema succinifaciens were more abundant in Holstein steers while the genera Capnocytophaga, Lachnoclostridium, Barnesiella, Oscillibacter, Galbibacter, and the species Capnocytophaga cynodegmi, Galbibacter mesophilus, Barnesiella intestinihominis, Prevotella shahii, and Oscillibacter ruminantium in the Jersey steers. The Jersey steers were dominated by Methanobrevibacter millerae while the Holstein steers by Methanobrevibacter olleyae. The overall results suggest that sampling hour has little influence on the rumen microbiota; however, breeds of steers can affect the assemblage of the rumen microbiota and different mitigation strategies may be needed to effectively manipulate the rumen microbiota and mitigate enteric CH4 emissions from these steers.

8.
Animals (Basel) ; 11(4)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924248

ABSTRACT

Seasonal effects on rumen microbiome and enteric methane (CH4) emissions are poorly documented. In this study, 6 Holstein and 6 Jersey steers were fed the same total mixed ration diet during winter, spring, and summer seasons under a 2 × 3 factorial arrangement for 30 days per season. The dry matter intake (DMI), rumen fermentation characteristics, enteric CH4 emissions and rumen microbiota were analyzed. Holstein had higher total DMI than Jersey steers regardless of season. However, Holstein steers had the lowest metabolic DMI during summer, while Jersey steers had the lowest total DMI during winter. Jersey steers had higher CH4 yields and intensities than Holstein steers regardless of season. The pH was decreased, while ammonia nitrogen concentration was increased in summer regardless of breed. Total volatile fatty acids concentration and propionate proportions were the highest in winter, while acetate and butyrate proportion were the highest in spring and in summer, respectively, regardless of breed. Moreover, Holstein steers produced a higher proportion of propionate, while Jersey steers produced a higher proportion of butyrate regardless of season. Metataxonomic analysis of rumen microbiota showed that operational taxonomic units and Chao 1 estimates were lower and highly unstable during summer, while winter had the lowest Shannon diversity. Beta diversity analysis suggested that the overall rumen microbiota was shifted according to seasonal changes in both breeds. In winter, the rumen microbiota was dominated by Carnobacterium jeotgali and Ruminococcus bromii, while in summer, Paludibacter propionicigenes was predominant. In Jersey steers, Capnocytophaga cynodegmi, Barnesiella viscericola and Flintibacter butyricus were predominant, whereas in Holstein steers, Succinivibrio dextrinosolvens and Gilliamella bombicola were predominant. Overall results suggest that seasonal changes alter rumen microbiota and fermentation characteristics of both breeds; however, CH4 emissions from steers were significantly influenced by breeds, not by seasons.

9.
J Anim Sci Technol ; 62(6): 812-823, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33987562

ABSTRACT

The aim of this study was to investigate the effects of Korean rice wine residue (RWR) on the growth performance and blood profiles of Hanwoo steers in the fattening stage. In situ and in vivo experiments were conducted to analyze rumen fermentation characteristics and total tract digestibility, respectively. Three cannulated Hanwoo steers (mean body weight: 448 ± 30 kg) were used in both analyses. The growth performance of 27 experimental animals in the fattening stage (initial body weight: 353.58 ± 9.76 kg) was evaluated after 13 months of feeding. The animals were divided into three treatment groups (n = 9/group). The treatments comprised total mixed ration (TMR) only (CON), TMR + 10% RWR (10% RWR), and TMR + 15% RWR (15% RWR). The diets of equal proportions were fed daily at 08:00 and 18:00 h based on 2% of the body weight. The animals had free access to water and trace mineral salts throughout the experiment. Supplementation of 15% RWR significantly decreased (p < 0.05) the rumen fluid pH compared with the control treatment, but there was no significant difference in the total volatile fatty acid concentration. It also significantly increased (p < 0.05) dry matter digestibility compared with the other treatments. The total weight gain and average daily gain of the animals in the RWR-supplemented groups were significantly higher (p < 0.05) than those in the control group. Furthermore, the feed intake and feed efficiency of the RWR-supplemented groups were higher than those of the control group. Supplementation of RWR did not affect the alcohol, albumin, glucose, total cholesterol, triglyceride, and low-density lipoprotein concentrations, and aspartate aminotransferase and alanine transaminase activities in the blood; these parameters were within the normal range. The high-density lipoprotein and creatinine concentrations were significantly higher in the 15% RWR group, whereas the blood urea nitrogen concentration was significantly higher in the 10% RWR group than in the other groups. These results suggest that TMR with 15% RWR can serve as an alternate feed resource for ruminants.

SELECTION OF CITATIONS
SEARCH DETAIL
...