Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732105

ABSTRACT

Multiple myeloma is an incurable plasma cell malignancy. Most patients end up relapsing and developing resistance to antineoplastic drugs, like bortezomib. Antibiotic tigecycline has activity against myeloma. This study analyzed tigecycline and bortezomib combination on cell lines and plasma cells from myeloma patients. Apoptosis, autophagic vesicles, mitochondrial mass, mitochondrial superoxide, cell cycle, and hydrogen peroxide were studied by flow cytometry. In addition, mitochondrial antioxidants and electron transport chain complexes were quantified by reverse transcription real-time PCR (RT-qPCR) or western blot. Cell metabolism and mitochondrial activity were characterized by Seahorse and RT-qPCR. We found that the addition of tigecycline to bortezomib reduces apoptosis in proportion to tigecycline concentration. Supporting this, the combination of both drugs counteracts bortezomib in vitro individual effects on the cell cycle, reduces autophagy and mitophagy markers, and reverts bortezomib-induced increase in mitochondrial superoxide. Changes in mitochondrial homeostasis and MYC upregulation may account for some of these findings. These data not only advise to avoid considering tigecycline and bortezomib combination for treating myeloma, but caution on the potential adverse impact of treating infections with this antibiotic in myeloma patients under bortezomib treatment.


Subject(s)
Apoptosis , Bortezomib , Mitochondria , Multiple Myeloma , Reactive Oxygen Species , Tigecycline , Bortezomib/pharmacology , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Tigecycline/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Mitophagy/drug effects , Cell Cycle/drug effects
2.
Front Immunol ; 14: 1127352, 2023.
Article in English | MEDLINE | ID: mdl-36860856

ABSTRACT

Introduction: Severe COVID-19 originates a myriad of alterations in the immune system during active disease, especially in the T and NK cell compartments, but several studies in the last year have unveiled some alterations that persist in convalescence. Although most of the studies follow the participants for a short recovery time, studies following patients up to three or six months still find alterations. We aimed at evaluating changes in the NK, T and B cell compartments after severe COVID-19 in participants with a median recovery time of eleven months. Methods: Eighteen convalescent of severe COVID-19 (CSC), 14 convalescent of mild COVID-19 (CMC) and nine controls were recruited. NKG2A, NKG2C, NKG2D and the activating receptor NKp44 were evaluated in NKbright, NKdim and NKT subpopulations. In addition, CD3 and CD19 were measured and a basic biochemistry with IL-6 levels was obtained. Results: CSC participants showed lower NKbright/NKdim ratio, higher NKp44 expression in NKbright subpopulations, higher levels of serum IL-6, lower levels of NKG2A+ T lymphocytes and a trend to a lower expression of CD19 in B lymphocytes compared to controls. CMC participants showed no significant alterations in the immune system compared to controls. Conclusions: These results are concordant with previous studies, which find alterations in CSC weeks or months after resolution of the symptoms, and point to the possibility of these alterations lasting one year or more after COVID-19 resolution.


Subject(s)
COVID-19 , Convalescence , Humans , Interleukin-6 , Adaptor Proteins, Signal Transducing , Killer Cells, Natural
3.
Metabolites ; 12(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36557244

ABSTRACT

After SARS-CoV-2 infection, the molecular phenoreversion of the immunological response and its associated metabolic dysregulation are required for a full recovery of the patient. This process is patient-dependent due to the manifold possibilities induced by virus severity, its phylogenic evolution and the vaccination status of the population. We have here investigated the natural history of COVID-19 disease at the molecular level, characterizing the metabolic and immunological phenoreversion over time in large cohorts of hospitalized severe patients (n = 886) and non-hospitalized recovered patients that self-reported having passed the disease (n = 513). Non-hospitalized recovered patients do not show any metabolic fingerprint associated with the disease or immune alterations. Acute patients are characterized by the metabolic and lipidomic dysregulation that accompanies the exacerbated immunological response, resulting in a slow recovery time with a maximum probability of around 62 days. As a manifestation of the heterogeneity in the metabolic phenoreversion, age and severity become factors that modulate their normalization time which, in turn, correlates with changes in the atherogenesis-associated chemokine MCP-1. Our results are consistent with a model where the slow metabolic normalization in acute patients results in enhanced atherosclerotic risk, in line with the recent observation of an elevated number of cardiovascular episodes found in post-COVID-19 cohorts.

4.
Int J Cardiol ; 361: 91-100, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35533751

ABSTRACT

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a disorder related to patient comorbidities and aging. Whether mitochondrial dysfunction is present during HFpEF decompensation versus the stable phase is largely unknown. The aim of the present study was to identify mitochondrial and cell metabolism blood biomarkers in older patients with acute and stable HFpEF. METHODS: Peripheral blood biomarkers were investigated in a group of eight to 12 patients aged 80-96 years and diagnosed with HFpEF first when they were in decompensated phase and then at least three months later in stable phase. Their data were compared to two control groups with an equal number of participants and sex proportions. One group was age matched and the other included individuals aged between 22 and 44 years. RESULTS: Decompensated patients experienced an increased mitochondrial superoxide production and mitochondrial mass, lower mitochondrial DNA copy number and LDHB expression, and higher lactate level compared to the stable stage. The stable phase was characterized by a sharp reduction in formate level. Multivariate analysis indicated that formate, lactate, and histidine can distinguish both of the HFpEF phases. Many of these parameters, including LDHB, lactate, formate, and mitochondrial mass, followed an age-related pattern, with acute HFpEF at its apex or nadir, suggesting that it represents an exacerbation of an aging-related process. CONCLUSIONS: We identified distinct blood biomarkers of chronic and decompensated HFpEF phases. The data underlined the relationship between HFpEF and aging. These findings could be used to monitor patients and might be therapeutically targeted.


Subject(s)
Heart Failure , Adult , Aged , Biomarkers , Formates , Humans , Lactates , Stroke Volume , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...