Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 18(10): e1010452, 2022 10.
Article in English | MEDLINE | ID: mdl-36223399

ABSTRACT

Natural plant populations often harbour substantial heritable variation in DNA methylation. However, a thorough understanding of the genetic and environmental drivers of this epigenetic variation requires large-scale and high-resolution data, which currently exist only for a few model species. Here, we studied 207 lines of the annual weed Thlaspi arvense (field pennycress), collected across a large latitudinal gradient in Europe and propagated in a common environment. By screening for variation in DNA sequence and DNA methylation using whole-genome (bisulfite) sequencing, we found significant epigenetic population structure across Europe. Average levels of DNA methylation were strongly context-dependent, with highest DNA methylation in CG context, particularly in transposable elements and in intergenic regions. Residual DNA methylation variation within all contexts was associated with genetic variants, which often co-localized with annotated methylation machinery genes but also with new candidates. Variation in DNA methylation was also significantly associated with climate of origin, with methylation levels being lower in colder regions and in more variable climates. Finally, we used variance decomposition to assess genetic versus environmental associations with differentially methylated regions (DMRs). We found that while genetic variation was generally the strongest predictor of DMRs, the strength of environmental associations increased from CG to CHG and CHH, with climate-of-origin as the strongest predictor in about one third of the CHH DMRs. In summary, our data show that natural epigenetic variation in Thlaspi arvense is significantly associated with both DNA sequence and environment of origin, and that the relative importance of the two factors strongly depends on the sequence context of DNA methylation. T. arvense is an emerging biofuel and winter cover crop; our results may hence be relevant for breeding efforts and agricultural practices in the context of rapidly changing environmental conditions.


Subject(s)
Thlaspi , Thlaspi/genetics , DNA Transposable Elements , Biofuels , Plant Breeding , DNA Methylation/genetics , Epigenesis, Genetic , DNA, Intergenic , Genetic Variation
2.
Plant Biotechnol J ; 20(5): 944-963, 2022 05.
Article in English | MEDLINE | ID: mdl-34990041

ABSTRACT

Thlaspi arvense (field pennycress) is being domesticated as a winter annual oilseed crop capable of improving ecosystems and intensifying agricultural productivity without increasing land use. It is a selfing diploid with a short life cycle and is amenable to genetic manipulations, making it an accessible field-based model species for genetics and epigenetics. The availability of a high-quality reference genome is vital for understanding pennycress physiology and for clarifying its evolutionary history within the Brassicaceae. Here, we present a chromosome-level genome assembly of var. MN106-Ref with improved gene annotation and use it to investigate gene structure differences between two accessions (MN108 and Spring32-10) that are highly amenable to genetic transformation. We describe non-coding RNAs, pseudogenes and transposable elements, and highlight tissue-specific expression and methylation patterns. Resequencing of forty wild accessions provided insights into genome-wide genetic variation, and QTL regions were identified for a seedling colour phenotype. Altogether, these data will serve as a tool for pennycress improvement in general and for translational research across the Brassicaceae.


Subject(s)
Thlaspi , Chromosomes , Ecosystem , Genome, Plant/genetics , Molecular Sequence Annotation , Thlaspi/genetics , Translational Research, Biomedical
3.
Curr Opin Plant Biol ; 61: 102060, 2021 06.
Article in English | MEDLINE | ID: mdl-34087759

ABSTRACT

Plants are hubs of organismic interactions. They constantly engage in beneficial or competitive interactions with fungi, oomycetes, bacteria, insects, nematodes, and other plants. To adjust the molecular processes necessary for the establishment and maintenance of beneficial interactions and for the defense against pathogens and herbivores, plants have evolved intricate regulatory mechanisms. Besides the canonical plant immune system that acts as the primary defense, epigenetic mechanisms have started to emerge as another regulatory entity and as a target of pathogens trying to overcome the plant's defenses. In this review, we highlight recent advances in understanding the contribution of various epigenetic components and of epigenetic diversity to plant-organismic interactions.


Subject(s)
Host-Pathogen Interactions , Oomycetes , Epigenesis, Genetic , Plant Immunity/genetics , Plants/genetics
4.
New Phytol ; 221(2): 731-737, 2019 01.
Article in English | MEDLINE | ID: mdl-30156271

ABSTRACT

Contents Summary 731 I. Biotic interactions in the context of genetic, epigenetic and environmental diversity 731 II. Biotic interactions affect epigenetic configuration 732 III. Plant epigenetic configuration influences biotic interactions 733 IV. Epigenetic memory in the context of biotic interactions 734 V. Conclusions and future research 735 Acknowledgements 735 Author contributions 735 References 735 SUMMARY: Plants are hubs of a wide range of biotic interactions with mutualist and antagonist animals, microbes and neighboring plants. Because the quality and intensity of those relationships can change over time, a fast and reversible response to stress is required. Here, we review recent studies on the role of epigenetic factors such as DNA methylation and histone modifications in modulating plant biotic interactions, and discuss the state of knowledge regarding their potential role in memory and priming. Moreover, we provide an overview of strategies to investigate the contribution of epigenetics to environmentally induced phenotypic changes in an ecological context, highlighting possible transitions from whole-genome high-resolution analyses in plant model organisms to informative reduced representation analyses in genomically less accessible species.


Subject(s)
Biota , Epigenesis, Genetic , Plants/genetics , Phenotype
5.
Plant Signal Behav ; 7(12): 1698-701, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23072997

ABSTRACT

The proper development of fruits is important for the sexual reproduction and propagation of many plant species. The fruit of Arabidopsis derives from the fertilized gynoecium, which initiates at the center of the flower and obtains its final shape, size, and functional tissues through progressive stages of development. Hormones, specially auxins, play important roles in gynoecium and fruit patterning. Cytokinins, which act as counterparts to auxins in other plant tissues, have been studied more in the context of ovule formation and parthenocarpy. We recently studied the role of cytokinins in gynoecium and fruit patterning and found that they have more than one role during gynoecium and fruit patterning. We also compared the cytokinin response localization to the auxin response localization in these organs, and studied the effects of spraying cytokinins in young flowers of an auxin response line. In this addendum, we discuss further the implications of the observed results in the knowledge about the relationship between cytokinins and auxins at the gynoecium.


Subject(s)
Arabidopsis/embryology , Arabidopsis/metabolism , Plant Growth Regulators/metabolism , Arabidopsis Proteins/metabolism , Cytokinins/metabolism , Flowers/embryology , Flowers/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism
6.
Plant J ; 72(2): 222-34, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22640521

ABSTRACT

Cytokinins have many essential roles in embryonic and post-embryonic growth and development, but their role in fruit morphogenesis is currently not really known. Moreover, information about the spatio-temporal localization pattern of cytokinin signaling in gynoecia and fruits is lacking. Therefore, the synthetic reporter line TCS::GFP was used to visualize cytokinin signaling during gynoecium and fruit development. Fluorescence was detected at medial regions of developing gynoecia, and, unexpectedly, at the valve margin in developing fruits, and was severely altered in mutants that lack or ectopically acquire valve margin identity. Comparison to developing gynoecia and fruits in a DR5rev::GFP line showed that the transcriptional responses to cytokinin and auxin are frequently present in complementary patterns. Moreover, cytokinin treatments in early gynoecia produced conspicuous changes, and treatment of valve margin mutant fruits restored this tissue. The results suggest that the phytohormone cytokinin is important in gynoecium and fruit patterning and morphogenesis, playing at least two roles: an early proliferation-inducing role at the medial tissues of the developing gynoecia, and a late role in fruit patterning and morphogenesis at the valve margin of developing fruits.


Subject(s)
Arabidopsis/growth & development , Cytokinins/metabolism , Flowers/growth & development , Fruit/growth & development , Plant Growth Regulators/metabolism , Arabidopsis/anatomy & histology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Proliferation , Cytokinins/pharmacology , Flowers/anatomy & histology , Flowers/drug effects , Flowers/genetics , Fruit/anatomy & histology , Fruit/drug effects , Fruit/genetics , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Mutation , Organ Specificity , Plant Growth Regulators/pharmacology , Plants, Genetically Modified , Recombinant Fusion Proteins , Reproduction , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...