Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Drug Des Devel Ther ; 11: 2171-2178, 2017.
Article in English | MEDLINE | ID: mdl-28769554

ABSTRACT

Diabetes mellitus type 1 (DM1) is an autoimmune disease in which ß-cells of the pancreas islet are destroyed by T lymphocytes. Specific T cells are activated by antigen-presenting cells, mainly dendritic cells (DCs). It is already known that the regulation of tryptophan pathway in DC can be a mechanism of immunomodulation. The enzyme indoleamine 2,3-dioxygenase (IDO) is present in many cells, including DC, and participates in the metabolism of the amino acid tryptophan. Recent studies suggest the involvement of IDO in the modulation of immune response, which became more evident after the in vitro demonstration of IDO production by DC and of the ability of these cells to inhibit lymphocyte function through the control of tryptophan metabolism. Current studies on immunotherapies describe the use of DC and IDO to control the progression of the immune response that triggers DM1. The initial results obtained are promising and indicate the possibility of developing therapies for the treatment or prevention of the DM1. Clinical trials using these cells in DM1 patients represent an interesting alternative treatment. However, clinical trials are still in the initial phase and a robust group of assays is necessary.


Subject(s)
Dendritic Cells/enzymology , Diabetes Mellitus, Type 1/therapy , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Dendritic Cells/immunology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
2.
Int. braz. j. urol ; 43(2): 356-366, Mar.-Apr. 2017. tab, graf
Article in English | LILACS | ID: biblio-840829

ABSTRACT

ABSTRACT Purpose To investigate the lower urinary tract changes in mice treated with L-NAME, a non-selective competitive inhibitor of nitric oxide synthase (NOS), or aminoguanidine, a competitive inhibitor of inducible nitric oxide synthase (iNOS), after 5 weeks of partial bladder outlet obstruction (BOO), in order to evaluate the role of constitutive and non-constitutive NOS in the pathogenesis of this experimental condition. Materials and Methods C57BL6 male mice were partially obstructed and randomly allocated into 6 groups: Sham, Sham + L-NAME, Sham + aminoguanidine, BOO, BOO + L-NAME and BOO + aminoguanidine. After 5 weeks, bladder weight was obtained and cystometry and tissue bath contractile studies were performed. Results BOO animals showed increase of non-voiding contractions (NVC) and bladder capacity, and also less contractile response to Carbachol and Electric Field Stimulation. Inhibition of NOS isoforms improved bladder capacity and compliance in BOO animals. L-NAME caused more NVC, prevented bladder weight gain and leaded to augmented contractile responses at muscarinic and electric stimulation. Aminoguanidine diminished NVC, but did not avoid bladder weight gain in BOO animals and did not improve contractile responses. Conclusion It can be hypothesized that chronic inhibition of three NOS isoforms in BOO animals leaded to worsening of bladder function, while selective inhibition of iNOS did not improve responses, what suggests that, in BOO animals, alterations are related to constitutive NOS.


Subject(s)
Animals , Male , Urinary Bladder Neck Obstruction/drug therapy , Nitric Oxide Synthase/antagonists & inhibitors , NG-Nitroarginine Methyl Ester/pharmacology , Enzyme Inhibitors/pharmacology , Lower Urinary Tract Symptoms/drug therapy , Guanidines/pharmacology , Nitric Oxide/antagonists & inhibitors , Pressure , Time Factors , Urination/drug effects , Urination/physiology , Urinary Bladder/drug effects , Urinary Bladder/physiopathology , Urinary Bladder Neck Obstruction/physiopathology , Random Allocation , Reproducibility of Results , Treatment Outcome , NG-Nitroarginine Methyl Ester/therapeutic use , Enzyme Inhibitors/therapeutic use , Guanidines/therapeutic use , Mice, Inbred C57BL , Muscle Contraction/drug effects
3.
PLoS One ; 9(11): e111616, 2014.
Article in English | MEDLINE | ID: mdl-25375115

ABSTRACT

Agonists such as icilin and menthol can activate the cool temperature-sensitive ion channel TRPM8. However, biological responses to menthol may occur independently of TRPM8 activation. In the rodent urinary bladder, menthol facilitates the micturition reflex but inhibits muscarinic contractions of the detrusor smooth muscle. The site(s) of TRPM8 expression in the bladder are controversial. In this study we investigated the regulation of bladder contractility in vitro by menthol. Bladder strips from wild type and TRPM8 knockout male mice (25-30 g) were dissected free and mounted in organ baths. Isometric contractions to carbachol (1 nM-30 µM), CaCl2 (1 µM to 100 mM) and electrical field stimulation (EFS; 8, 16, 32 Hz) were measured. Strips from both groups contracted similarly in response to both carbachol and EFS. Menthol (300 µM) or nifedipine (1 µM) inhibited carbachol and EFS-induced contractions in both wild type and TRPM8 knockout bladder strips. Incubation with the sodium channel blocker tetrodotoxin (1 µM), replacement of extracellular sodium with the impermeant cation N-Methyl-D-Glucamine, incubation with a cocktail of potassium channel inhibitors (100 nM charybdotoxin, 1 µM apamin, 10 µM glibenclamide and 1 µM tetraethylammonium) or removal of the urothelium did not affect the inhibitory actions of menthol. Contraction to CaCl2 was markedly inhibited by either menthol or nifedipine. In cultured bladder smooth muscle cells, menthol or nifedipine abrogated the carbachol or KCl-induced increases in [Ca2+]i. Intravesical administration of menthol increased voiding frequency while decreasing peak voiding pressure. We conclude that menthol inhibits muscarinic bladder contractions through blockade of L-type calcium channels, independently of TRPM8 activation.


Subject(s)
Menthol/administration & dosage , Muscle Contraction/drug effects , Muscle, Smooth/physiology , TRPM Cation Channels/metabolism , Urinary Bladder/physiology , Animals , Calcium Channel Blockers/pharmacology , Calcium Chloride/metabolism , Carbachol/pharmacology , Cells, Cultured , Electric Stimulation/methods , In Vitro Techniques , Male , Menthol/pharmacology , Mice , Mice, Knockout , Nifedipine/pharmacology , TRPM Cation Channels/genetics , Tetrodotoxin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...