Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Nutr ; 118(1): 41-52, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28797310

ABSTRACT

The quality of dietary lipids in the maternal diet can programme the offspring to diseases in later life. We investigated whether the maternal intake of palm oil or interesterified fat, substitutes for trans-unsaturated fatty acids (FA), induces metabolic changes in the adult offspring. During pregnancy and lactation, C57BL/6 female mice received normolipidic diets containing partially hydrogenated vegetable fat rich in trans-unsaturated fatty acids (TG), palm oil (PG), interesterified fat (IG) or soyabean oil (CG). After weaning, male offspring from all groups received the control diet until day 110. Plasma glucose and TAG and liver FA profiles were ascertained. Liver mitochondrial function was accessed with high-resolution respirometry by measuring VO2, fluorimetry for detection of hydrogen peroxide (H2O2) production and mitochondrial Ca2+ uptake. The results showed that the IG offspring presented a 20 % increase in plasma glucose and both the IG and TG offspring presented a 2- and 1·9-fold increase in TAG, respectively, when compared with CG offspring. Liver MUFA and PUFA contents decreased in the TG and IG offspring when compared with CG offspring. Liver MUFA content also decreased in the PG offspring. These modifications in FA composition possibly affected liver mitochondrial function, as respiration was impaired in the TG offspring and H2O2 production was higher in the IG offspring. In addition, mitochondrial Ca2+ retention capacity was reduced by approximately 40 and 55 % in the TG and IG offspring, respectively. In conclusion, maternal consumption of trans-unsaturated and interesterified fat affected offspring health by compromising mitochondrial bioenergetics and lipid metabolism in the liver.


Subject(s)
Energy Metabolism , Fatty Acids/adverse effects , Lactation , Liver/metabolism , Maternal Nutritional Physiological Phenomena , Mitochondria/metabolism , Trans Fatty Acids/adverse effects , Animal Nutritional Physiological Phenomena , Animals , Blood Glucose/metabolism , Calcium/metabolism , Dietary Fats/adverse effects , Dietary Fats/metabolism , Fatty Acids/metabolism , Fatty Acids, Monounsaturated/metabolism , Fatty Acids, Unsaturated/metabolism , Female , Hydrogen Peroxide/metabolism , Male , Mice, Inbred C57BL , Oxygen Consumption , Plant Oils , Pregnancy , Prenatal Exposure Delayed Effects , Respiration , Trans Fatty Acids/metabolism , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...