Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 13602, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38866899

ABSTRACT

Mouse models for the study of pancreatic ductal adenocarcinoma (PDAC) are well-established and representative of many key features observed in human PDAC. To monitor tumor growth, cancer cells that are implanted in mice are often transfected with reporter genes, such as firefly luciferase (Luc), enabling in vivo optical imaging over time. Since Luc can induce an immune response, we aimed to evaluate whether the expression of Luc could affect the growth of KPC tumors in mice by inducing immunogenicity. Although both cell lines, KPC and Luc transduced KPC (KPC-Luc), had the same proliferation rate, KPC-Luc tumors had significantly smaller sizes or were absent 13 days after orthotopic cell implantation, compared to KPC tumors. This coincided with the loss of bioluminescence signal over the tumor region. Immunophenotyping of blood and spleen from KPC-Luc tumor-bearing mice showed a decreased number of macrophages and CD4+ T cells, and an increased accumulation of natural killer (NK) cells in comparison to KPC tumor mice. Higher infiltration of CD8+ T cells was found in KPC-Luc tumors than in their controls. Moreover, the immune response against Luc peptide was stronger in splenocytes from mice implanted with KPC-Luc cells compared to those isolated from KPC wild-type mice, indicating increased immunogenicity elicited by the presence of Luc in the PDAC tumor cells. These results must be considered when evaluating the efficacy of anti-cancer therapies including immunotherapies in immunocompetent PDAC or other cancer mouse models that use Luc as a reporter for bioluminescence imaging.


Subject(s)
Carcinoma, Pancreatic Ductal , Disease Models, Animal , Pancreatic Neoplasms , Animals , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Mice , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Humans , CD8-Positive T-Lymphocytes/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Luciferases, Firefly/genetics , Luciferases/metabolism , Luciferases/genetics
2.
Cell Oncol (Dordr) ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805131

ABSTRACT

PURPOSE: Pancreatic Ductal Adenocarcinoma (PDAC) remains a challenging disease due to its complex biology and aggressive behavior with an urgent need for efficient therapeutic strategies. To assess therapy response, pre-clinical PDAC organoid-based models in combination with accurate real-time monitoring are required. METHODS: We established stable live-imaging organoid/peripheral blood mononuclear cells (PBMCs) co-cultures and introduced OrganoIDNet, a deep-learning-based algorithm, capable of analyzing bright-field images of murine and human patient-derived PDAC organoids acquired with live-cell imaging. We investigated the response to the chemotherapy gemcitabine in PDAC organoids and the PD-L1 inhibitor Atezolizumab, cultured with or without HLA-matched PBMCs over time. Results obtained with OrganoIDNet were validated with the endpoint proliferation assay CellTiter-Glo. RESULTS: Live cell imaging in combination with OrganoIDNet accurately detected size-specific drug responses of organoids to gemcitabine over time, showing that large organoids were more prone to cytotoxic effects. This approach also allowed distinguishing between healthy and unhealthy status and measuring eccentricity as organoids' reaction to therapy. Furthermore, imaging of a new organoids/PBMCs sandwich-based co-culture enabled longitudinal analysis of organoid responses to Atezolizumab, showing an increased potency of PBMCs tumor-killing in an organoid-individual manner when Atezolizumab was added. CONCLUSION: Optimized PDAC organoid imaging analyzed by OrganoIDNet represents a platform capable of accurately detecting organoid responses to standard PDAC chemotherapy over time. Moreover, organoid/immune cell co-cultures allow monitoring of organoid responses to immunotherapy, offering dynamic insights into treatment behavior within a co-culture setting with PBMCs. This setup holds promise for real-time assessment of immunotherapeutic effects in individual patient-derived PDAC organoids.

3.
Biomed Opt Express ; 14(8): 3988-4002, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37799688

ABSTRACT

Fixation methods such as formalin are commonly used for the preservation of tissue with the aim of keeping their structure as close as possible to the native condition. However, fixatives chemically interact with tissue molecules, such as collagen in the extracellular matrix (ECM) or myosin, and may thus modify their structure. Taking advantage of the second- and third-harmonic generation (SHG and THG) emission capabilities of such components, we used nonlinear two-photon microscopy (NL2PM) to evaluate the effect that preservation methods, such as chemical fixatives, have on the nonlinear capabilities of protein components within mouse tissues. Our results show that depending on the preservation technique used, the nonlinear capabilities of collagen, lipid droplets and myosin microarchitecture are strongly affected. Parameters of collagen fibers, such as density and branch points, especially in collagen-sparse regions, e.g., in kidneys, were found to be altered upon formalin fixation. Moreover, cryo-freezing drastically reduced SHG signals from myosin. Our findings provide valuable information to select the best tissue fixation method for visualization and quantification of structural proteins, such as collagen and myosin by advanced NL2PM imaging techniques. This may advance the interpretation of the role these proteins play in disease.

4.
Bio Protoc ; 12(2): e4293, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35127983

ABSTRACT

Nanomaterials are increasingly used for the diagnosis and treatment of cancer, including lung cancer. For the clinical translation of nano-based theranostics, it is vital to detect and monitor their accumulation in the tumor, as well as their interaction with tumor, immune cells, and the tumor microenvironment (TME). While high resolution microscopy of fixed tumor specimens can provide some of this information from individual thin slices, it cannot capture cellular events over time and lacks 3D information of the tumor tissue. On the other hand, in vivo optical procedures either fall short of providing the necessary cellular resolution, as in the case of epifluorescence optical imaging, or are very demanding, as for instance intravital lung microscopy. We describe an alternative approach to investigate nanoparticle-cell interactions in entire mouse lung lobes, by longitudinal live cell confocal microscopy at nanometer resolution. By filling the lung ex vivo with 1% agarose, we were able to stabilize the lung lobes and visualize the interaction of fluorescent cells and nanoparticles for at least 4 hours post mortem. This high resolution ex vivo live cell imaging approach is an easy 4D tool for assessing several dynamic processes in tumor tissue, such as the traffic of cells, shedding of extracellular vesicles (EVs), and the accumulation of nanoparticles in tumor tissue. Graphic abstract: Schematic of the workflow for live cell imaging in the mouse lung.

5.
J Dermatol Sci ; 105(2): 80-87, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35016821

ABSTRACT

BACKGROUND: Mutations in the genes that encode the human γ-secretase subunits Presenilin-1, Presenilin Enhancer Protein 2, and Nicastrin (NCSTN) are associated with familial hidradenitis suppurativa (HS); and, regarding Presenilin Enhancer Protein 2, also with comorbidity for the hereditary pigmentation disorder Dowling-Degos disease. OBJECTIVE: Here, the consequences of targeted inactivation of ncstn, the zebrafish homologue of human NCSTN, were studied. METHODS: After morpholino (MO)-mediated ncstn-knockdown, the possibilities of phenotype rescue through co-injection of ncstn-MO with wildtype zebrafish ncstn or human NCSTN mRNA were investigated. Further, the effects of the co-injection of a human missense, nonsense, splice-site, and frameshift mutation were studied. RESULTS: MO-mediated ncstn-knockdown resulted in a significant reduction in melanophore morphology, size and number; and alterations in their patterns of migration and distribution. This phenotype was rescued by co-injection of zebrafish ncstn RNA, human NCSTN RNA, or a construct encoding the human NCSTN missense mutation p.P211R. CONCLUSION: Human NCSTN mutations encoding null alleles confer loss-of-function regarding pigmentation homeostasis in zebrafisch. In contrast, the human missense mutation p.P211R was less harmful, asserting sufficient residual ncstn activity to maintain pigmentation in zebrafish. Since fish lack the anatomical structures affected by HS, our data suggest that the zebrafish ncstn gene and the human NCSTN gene have probably acquired different functions during evolution. In fish, one major role of ncstn is the maintenance of pigmentation homeostasis. In contrast, one of the roles of NCSTN in humans is the prevention of inflammatory processes in the adnexal structures of the skin, as seen in familial HS.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Membrane Glycoproteins/metabolism , Amyloid Precursor Protein Secretases/genetics , Animals , Hidradenitis Suppurativa/genetics , Humans , Membrane Glycoproteins/genetics , Zebrafish
6.
Biomed Opt Express ; 12(11): 7009-7023, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34858695

ABSTRACT

Heart failure is one of the most common causes of morbidity and mortality. Both maturational abnormalities and age-associated cardiac pathologies contribute to heart failure. Imaging-based assessment to discern detailed cardiac structure at various maturational stages is imperative for understanding mechanisms behind cardiac growth and aging. Using multiphoton nonlinear optical microscopy (NLOM) based label-free imaging, we investigated cardiac structural composition in a human-relevant aging model, the common marmoset monkey (Callithrix jacchus). Animals were divided into three different age groups including neonatal, young adult and old. By devising a unique strategy for segregating collagen and myosin emitted second harmonic generation (SHG) signals, we performed a volumetric assessment of collagen and total scattering tissue (collagen + myosin). Aged marmoset hearts exhibited an increase in collagen and total scattering tissue volume at the sites of severe tissue remodelling indicating age-related cardiac fibrosis. Significantly low scattering tissue volume in neonatal marmoset hearts was attributed to a lack of binding between the myofibrils in maturing cardiac tissue. Comprehensive quantitative assessment of structural composition during maturation and aging of marmoset hearts revealed significant differences in myofibril length, alignment, curvature and angular distribution. In conclusion, label-free high-resolution NLOM facilitates visualization and quantification of subcellular structural features for understanding vital age-related morphological alterations in the marmoset heart.

7.
Methods Mol Biol ; 2350: 105-123, 2021.
Article in English | MEDLINE | ID: mdl-34331282

ABSTRACT

Early detection of malignant tumors, micrometastases, and disseminated tumor cells is one of the effective way of fighting cancer. Among the many existing imaging methods like computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT), optical imaging with fluorescent probes is one of the most promising alternatives because it is fast, inexpensive, safe, sensitive, and specific. However, traditional fluorescent probes, based on organic fluorescent dyes, suffer from the low signal-to-noise ratio. Furthermore, conventional organic fluorescent dyes are unsuitable for deep tissue imaging because of the strong visible light absorption by biological tissues. The use of fluorescent semiconductor nanocrystals, or quantum dots (QDs), may overcome this limitation due to their large multiphoton cross section, which ensures efficient imaging of thick tissue sections inaccessible with conventional fluorescent probes. Moreover, the lower photobleaching and higher brightness of fluorescence signals from QDs ensures a much better discrimination of positive signals from the background. The use of fluorescent nanoprobes based on QDs conjugated to uniformly oriented high-affinity single-domain antibodies (sdAbs) may significantly increase the sensitivity and specificity due to better recognition of analytes and deeper penetration into tissues due to small size of such nanoprobes.Here, we describe a protocol for the fabrication of nanoprobes based on sdAbs and QDs, preparation of experimental xenograft mouse models for quality control, and multiphoton imaging of deep-tissue solid tumors, micrometastases, and disseminated tumor cells.


Subject(s)
Fluorescent Antibody Technique/methods , Microscopy, Fluorescence, Multiphoton/methods , Neoplasms/diagnostic imaging , Neoplasms/pathology , Quantum Dots , Single-Domain Antibodies , Cell Line, Tumor , Fluorescent Antibody Technique/standards , Humans , Immunoconjugates/chemistry , Immunohistochemistry/methods , Molecular Probes , Multimodal Imaging/methods , Nanoparticles , Neoplasm Micrometastasis , Optical Imaging/methods
8.
Schizophr Bull ; 47(5): 1409-1420, 2021 08 21.
Article in English | MEDLINE | ID: mdl-33871014

ABSTRACT

The neuregulin 1 (NRG1) ErbB4 module is at the core of an "at risk" signaling pathway in schizophrenia. Several human studies suggest hyperstimulation of NRG1-ErbB4 signaling as a plausible pathomechanism; however, little is known about the significance of stage-, brain area-, or neural cell type-specific NRG1-ErbB4 hyperactivity for disease-relevant brain endophenotypes. To address these spatiotemporal aspects, we generated transgenic mice for Cre recombinase-mediated overexpression of cystein-rich domain (CRD) NRG1, the most prominent NRG1 isoform in the brain. A comparison of "brain-wide" vs cell type-specific CRD-NRG1 overexpressing mice revealed that pathogenic CRD-NRG1 signals for ventricular enlargement and neuroinflammation originate outside glutamatergic neurons and suggests a subcortical function of CRD-NRG1 in the control of body weight. Embryonic onset of CRD-NRG1 in glutamatergic cortical networks resulted in reduced inhibitory neurotransmission and locomotor hyperactivity. Our findings identify ventricular enlargement and locomotor hyperactivity, 2 main endophenotypes of schizophrenia, as specific consequences of spatiotemporally distinct expression profiles of hyperactivated CRD-NRG1 signaling.


Subject(s)
Brain , Endophenotypes , Glutamic Acid/metabolism , Nerve Net , Neuregulin-1/metabolism , Psychomotor Agitation , Receptor, ErbB-4/metabolism , Schizophrenia , Animals , Behavior, Animal/physiology , Brain/metabolism , Brain/physiopathology , Disease Models, Animal , Embryo, Mammalian , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/metabolism , Nerve Net/physiopathology , Psychomotor Agitation/metabolism , Psychomotor Agitation/physiopathology , Schizophrenia/metabolism , Schizophrenia/physiopathology , Signal Transduction/physiology
9.
Front Bioeng Biotechnol ; 8: 588922, 2020.
Article in English | MEDLINE | ID: mdl-33195152

ABSTRACT

A successful clinical translation of novel nanoparticle-based cancer therapeutics requires a thorough preclinical investigation of their interaction with immune, tumor and endothelial cells as well as components of the tumor-microenvironment. Although high-resolution microscopy images of fixed tumor tissue specimens can provide valuable information in this regard, they are only static snapshots of a momentary event. Here we describe a superior alternative fluorescence microscopy approach to assess the feasibility of investigating nanoparticle-cell interactions in the mouse lung live and over time at nanometer resolution. We applied fluorescent lung tumor cells and Barium-based fluorescently labeled nanoparticles to nude mice or to CD68-EGFP transgenic mice for visualization of the monocyte-macrophage lineage. Shortly before imaging, fluorescently labeled lectin was intravenously injected for staining of the blood vessels. The lung was filled ex vivo with 1% agarose and individual lung lobes were imaged over time using a confocal microscope with Airyscan technology. Time series demonstrate that live cell imaging of lung lobes can be performed for at least 4 h post mortem. Time-lapse movies illustrate the dynamics of the nanoparticles within the pulmonary circulation and their uptake by immune cells. Moreover, the exchange of nanoparticle material between cancer cells was observed over time. Fluorescent monocytes in lungs of CD68-EGFP transgenic mice could be visualized within blood vessels in the process of interaction with tumor cells and nanoparticles. This high resolution ex vivo live cell imaging approach provides an excellent 4D tool to obtain valuable information on the behavior of tumor and immune cells at first encounter with nanoparticles and may contribute to the understanding of how nanoparticles interact with cells supporting the development of therapeutic strategies based on nanoparticulate drug delivery systems.

10.
Methods Mol Biol ; 2135: 199-212, 2020.
Article in English | MEDLINE | ID: mdl-32246336

ABSTRACT

Fluorescent semiconductor nanocrystals, known as quantum dots (QDs), and magnetic nanoparticles (MNPs) are extensively studied perspective tools for optical (fluorescence) and magnetic resonance imaging techniques. The unique optical properties, high photostability, and bright luminescence of QDs make them more promising fluorophores than the classical organic dyes. Encoding polyelectrolyte microcapsules with QDs and MNPs ensures their sensitivity to both photoexcitation and magnetic field. This chapter presents the protocol for obtaining a stimulus-sensitive delivery system based on QD- and MNP-encoded polyelectrolyte microcapsules by means of layer-by-layer self-assembly. The resultant fluorescent magnetic polyelectrolyte microcapsules are 3.4-5.5 µm in size, have a hollow structure, and are brightly fluorescent to be detected with the standard imaging equipment. Polyelectrolyte microcapsule surface bears functional groups for subsequent functionalization with vector capture molecules. The polyelectrolyte microcapsules containing combination of QDs and MNPs are advanced visualization tools, since they can be sorted in a magnetic field and at the same time are suitable for fluorescent imaging what can be applied within a wide range of diagnostic and therapeutic protocols.


Subject(s)
Drug Delivery Systems/methods , Magnetite Nanoparticles/chemistry , Quantum Dots/chemistry , Animals , Capsules/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Humans , Magnetics/methods , Nanoparticles/chemistry
11.
Front Chem ; 7: 34, 2019.
Article in English | MEDLINE | ID: mdl-30761294

ABSTRACT

Imaging agents and drug carriers are commonly targeted toward cancer cell through functionalization with specific recognition molecules. Quantum dots (QDs) are fluorescent semiconductor nanocrystals whose extraordinary brightness and photostability make them attractive for direct fluorescent labeling of biomolecules or optical encoding of the membranes and cells. Here, we analyse the cytotoxicity of QD-encoded microcapsules, validate an approach to the activation of the microcapsule's surface for further functionalization with monoclonal antibody Trastuzumab, a humanized monoclonal antibody targeting the extracellular domain of the human epidermal growth factor receptor 2 (HER2) and already in clinical use for the treatment of HER2 positive breast cancer. In addition, we characterize the cell-specific targeting activity of the resultant bio-conjugate by immunofluorescence assay (IFA) and real-time analysis of interaction of the conjugates with live HER2 overexpressing human breast cancer cells. We demonstrate, that encapsulation of QDs into the polymer shell using the layer-by-layer deposition method yields highly fluorescent polyelectrolyte microcapsules with a homogeneous size distribution and biocompatibility upon in vitro treatment of cancer cells. Carbodiimide surface activation ensures optimal disperse and optical characteristics of the QD-encoded microcapsules before antibody conjugation. The prepared conjugates of the microcapsules with cancer-specific monoclonal antibody targeting HER2 provide sufficiently sensitive and specific antibody-mediated binding of the microcapsules with live cancer cells, which demonstrated their potential as prospective cancer cell-targeting agents.

12.
Small ; 15(4): e1803776, 2019 01.
Article in English | MEDLINE | ID: mdl-30536849

ABSTRACT

Recently, second harmonic generation (SHG) nanomaterials have been generated that are efficiently employed in the classical (NIR) and extended (NIR-II) near infrared windows using a multiphoton microscope. The aim was to test bismuth ferrite harmonic nanoparticles (BFO-HNPs) for their ability to monitor pulmonary macrophages in mice. BFO-loaded MH-S macrophages are given intratracheally to healthy mice or BFO-HNPs are intranasally instilled in mice with allergic airway inflammation and lung sections of up to 100 µM are prepared. Using a two-photon-laser scanning microscope, it is shown that bright BFO-HNPs signals are detected from superficially localized cells as well as from deep within the lung tissue. BFO-HNPs are identified with an excellent signal-to-noise ratio and virtually no background signal. The SHG from the nanocrystals can be distinguished from the endogenous collagen-derived SHG around the blood vessels and bronchial structures. BFO-HNPs are primarily taken up by M2 alveolar macrophages in vivo. This SHG imaging approach provides novel information about the interaction of macrophages with cells and the extracellular matrix in lung disease as it is capable of visualizing and tracking NP-loaded cells at high resolution in thick tissues with minimal background fluorescence.


Subject(s)
Bismuth/chemistry , Ferric Compounds/chemistry , Macrophages, Alveolar/cytology , Nanoparticles/chemistry , Animals , Bronchoalveolar Lavage , Female , Macrophages, Alveolar/ultrastructure , Mice , Mice, Inbred BALB C , Microscopy, Confocal , Microscopy, Electron , Nanoparticles/ultrastructure
13.
Sci Rep ; 8(1): 4595, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29545609

ABSTRACT

Early detection of malignant tumours and, especially, micrometastases and disseminated tumour cells is still a challenge. In order to implement highly sensitive diagnostic tools we demonstrate the use of nanoprobes engineered from nanobodies (single-domain antibodies, sdAbs) and fluorescent quantum dots (QDs) for single- and two-photon detection and imaging of human micrometastases and disseminated tumour cells in ex vivo biological samples of breast and pancreatic metastatic tumour mouse models expressing human epidermal growth factor receptor 2 (HER2) or carcinoembryonic antigen (CEA). By staining thin (5-10 µm) paraffin and thick (50 µm) agarose tissue sections, we detected HER2- and CEA-positive human tumour cells infiltrating the surrounding tissues or metastasizing to different organs, including the brain, testis, lung, liver, and lymph nodes. Compared to conventional fluorescently labelled antibodies the sdAb-HER2-QD and sdAb-CEA-QD nanoprobes are superior in detecting micrometastases in tissue sections by lower photobleaching and higher brightness of fluorescence signals ensuring much better discrimination of positive signals versus background. Very high two-photon absorption cross-sections of QDs and small size of the nanoprobes ensure efficient imaging of thick tissue sections unattainable with conventional fluorescent probes. The nanobody-QD probes will help to improve early cancer diagnosis and prognosis of progression by assessing metastasis.


Subject(s)
Breast Neoplasms/pathology , Quantum Dots/chemistry , Single-Domain Antibodies/immunology , Animals , Breast Neoplasms/metabolism , Carcinoembryonic Antigen/immunology , Cell Line, Tumor , Female , Fluorescent Dyes/chemistry , Humans , Mice , Mice, Nude , Microscopy, Confocal , Microscopy, Fluorescence, Multiphoton , Neoplasm Micrometastasis , Receptor, ErbB-2/immunology , Single-Domain Antibodies/chemistry , Transplantation, Heterologous
14.
Nanoscale Res Lett ; 13(1): 30, 2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29372483

ABSTRACT

Fabrication of polyelectrolyte microcapsules and their use as carriers of drugs, fluorescent labels, and metal nanoparticles is a promising approach to designing theranostic agents. Semiconductor quantum dots (QDs) are characterized by extremely high brightness and photostability that make them attractive fluorescent labels for visualization of intracellular penetration and delivery of such microcapsules. Here, we describe an approach to design, fabricate, and characterize physico-chemical and functional properties of polyelectrolyte microcapsules encoded with water-solubilized and stabilized with three-functional polyethylene glycol derivatives core/shell QDs. Developed microcapsules were characterized by dynamic light scattering, electrophoretic mobility, scanning electronic microscopy, and fluorescence and confocal microscopy approaches, providing exact data on their size distribution, surface charge, morphological, and optical characteristics. The fluorescence lifetimes of the QD-encoded microcapsules were also measured, and their dependence on time after preparation of the microcapsules was evaluated. The optimal content of QDs used for encoding procedure providing the optimal fluorescence properties of the encoded microcapsules was determined. Finally, the intracellular microcapsule uptake by murine macrophages was demonstrated, thus confirming the possibility of efficient use of developed system for live cell imaging and visualization of microcapsule transportation and delivery within the living cells.

15.
J Biol Chem ; 290(51): 30351-65, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26518875

ABSTRACT

KV10.1 is a voltage-gated potassium channel expressed selectively in the mammalian brain but also aberrantly in cancer cells. In this study we identified short splice variants of KV10.1 resulting from exon-skipping events (E65 and E70) in human brain and cancer cell lines. The presence of the variants was confirmed by Northern blot and RNase protection assays. Both variants completely lacked the transmembrane domains of the channel and produced cytoplasmic proteins without channel function. In a reconstituted system, both variants co-precipitated with the full-length channel and induced a robust down-regulation of KV10.1 current when co-expressed with the full-length form, but their effect was mechanistically different. E65 required a tetramerization domain and induced a reduction in the overall expression of full-length KV10.1, whereas E70 mainly affected its glycosylation pattern. E65 triggered the activation of cyclin-dependent kinases in Xenopus laevis oocytes, suggesting a role in cell cycle control. Our observations highlight the relevance of noncanonical functions for the oncogenicity of KV10.1, which need to be considered when ion channels are targeted for cancer therapy.


Subject(s)
Alternative Splicing/physiology , Cell Cycle/physiology , Cyclin-Dependent Kinases/metabolism , Ether-A-Go-Go Potassium Channels/metabolism , Animals , Base Sequence , Cyclin-Dependent Kinases/genetics , Enzyme Activation , Ether-A-Go-Go Potassium Channels/genetics , HEK293 Cells , HeLa Cells , Humans , Molecular Sequence Data , Oocytes/cytology , Oocytes/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...