Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Geochem Health ; 45(12): 9215-9230, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37209325

ABSTRACT

Mining activity is one of the main sources to pollute soil, water and plants. An analysis of soil and plant samples around the Atrevida mining area in Catalonia (NE Spain) was preformed to determine potentially harmful elements (PHEs). Soil and plant samples were taken at eight locations around the mining area. The topsoil (0-15 cm) samples were analysed for physico-chemical properties by standard methods, by ICP-MS for Cd, Co, Cr, Cu, Fe, Ni, Pb and Zn, and were microwave-digested. Plant, root and shoot samples were digested separately, and heavy metals were analysed by AAS. Translocation factor (TF), biological concentration factor (BCF) and biological accumulation factor (BAF) were determined to assess the tolerance strategies developed by native species and to evaluate their potential for phytoremediation purposes. Soil pH was generally acid (5.48-6.72), with high soil organic matter (SOM) content and a sandy loamy or loamy texture. According to the agricultural soil values in southern Europe, our PHEs concentrations exceeded the toxicity thresholds. The highest root content of the most studied PHEs appeared in Thymus vulgaris L. and Festuca ovina L., while Biscutella laevigata L. accumulated more PHEs in shoots. The TF values were > 1 in B. laevigata L., but BAF obtained < 1, except Pb. B. laevigata L., and can be considered potentially useful for phytoremediation for having the capacity to restrict the accumulation of large PHEs amounts in roots and Pb translocation to shoots.


Subject(s)
Metals, Heavy , Soil Pollutants , Soil/chemistry , Spain , Lead/toxicity , Lead/analysis , Soil Pollutants/analysis , Metals, Heavy/toxicity , Metals, Heavy/analysis , Plants , Environmental Monitoring
2.
Sci Total Environ ; 671: 280-287, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-30928757

ABSTRACT

Marine pollution is one of today's most relevant problems. Public awareness has been raised about the harmful potential of heavy metals (HMs) accumulating in edible fish and possibly ending up in human diet through the food chain. This study aimed to characterize and evaluate As, Cd, Cr, Cu, Ni and Pb contents in four edible fish species from the western Mediterranean Sea. Liver and muscle toxic elements were determined by GF-AAS in Mullus surmuletus, Merluccius merluccius, Auxis rochei and Scomber japonicus from Almería Bay (Spain). Muscular composition, biometrics and trophic levels were also determined. The mean PTE concentration levels (mg kg-1, DW) in fish muscle tissue were: As (2.90-53.74), Cd (0.01-0.18), Cr (0.53-2.01), Cu (0.78-6.93), Ni (0.06-0.24), Pb (0.0-0.32). These concentrations did not exceed the maximum limits set by European legislation (Commission Regulation (EC) No. 1881/2006) for the intake of these marine species. Accumulation of toxic elements tends to be seen in the liver (As (7.31-26.77), Cd (0.11-8.59), Cr (0.21-2.94), Cu (2.64-16.90), Ni (0.16-1.03), Pb (0.0-0.99)). As was the element at highest risk in this Mediterranean region, especially due to red mullet values in muscle. The high As contents with living habits as benthic species that feed near the coast. HMs, especially muscle Cd contents, were associated with higher contents of lipids and organic matter, and bigger specimen size (length and weight), while As was linked to higher fish protein content. However, these relationships between potentially toxic elements (PTE) and biometric indices and body composition parameters depend on species. Finally, the THQ indices indicated that eating fish from Almería Bay poses no human health risk despite pollution from the Almería coastline.


Subject(s)
Arsenic/metabolism , Environmental Monitoring , Gadiformes/metabolism , Metals, Heavy/metabolism , Perciformes/metabolism , Water Pollutants, Chemical/metabolism , Age Factors , Animals , Biometry , Body Weight , Environmental Exposure , Liver/metabolism , Mediterranean Sea , Muscles/metabolism , Seafood/analysis , Spain
3.
Mar Pollut Bull ; 135: 783-789, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30301098

ABSTRACT

Total liver and muscle mercury, and muscular composition, biometrics and trophic levels, were determined in four species (Mullus surmuletus, Merluccius merluccius, Auxis rochei and Scomber japonicus) of the Mediterranean Sea (Almería Bay, Spain). Mercury levels did not exceed the maximum residue limit, and M. merluccius obtained the highest level in muscle. Considerable variations in Hg content among individuals were observed in non-gregarious species. A positive correlation between Hg and trophic level or length was found in muscle, but not in liver. Organs (liver or muscle) with major Hg accumulation depend on species; muscle in M. merluccius and liver in S. japonicus. The results indicate that Hg levels in fish depend on intra- and interspecies factors that should be taken into account in systems to monitor Hg levels.


Subject(s)
Food Contamination/analysis , Gadiformes , Mercury/analysis , Perciformes , Water Pollutants, Chemical/analysis , Age Factors , Animals , Bays , Body Composition , Body Weight , Fish Products/analysis , Food Chain , Liver/chemistry , Mediterranean Sea , Mercury/pharmacokinetics , Muscle, Skeletal/chemistry , Spain , Tissue Distribution , Water Pollutants, Chemical/pharmacokinetics
4.
Environ Pollut ; 196: 156-63, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25463709

ABSTRACT

Historical trends in trace element deposition were analyzed using herbaria specimens. We determined Al, Fe, Mg, Mn, Ca, Na, P, K, S, As, Cd, Cr, Cu, Ni, Pb and Zn contents in leaves of eight specimens collected in 1941. To assess changes, we collected the same plants from a botanical garden in 2012. The concentrations of major elements showed large species variability. However, temporal trends were predominately detected for heavy metals. The Cd, Ni and Cr contents in the 2012 leaves were 10, 13 and 16 times higher, respectively, than in 1941. Urban activities have substantially raised the levels of these metals in urban atmospheres due to changes in human activities over 70 years of urban growth. Nevertheless, Pb has decreased (126%) in recent decades thanks to controlled lead fuel combustion. In short, metal deposition trend to increase Cr, Ni and Cd levels.


Subject(s)
Cities/statistics & numerical data , Environmental Monitoring/methods , Environmental Pollution/statistics & numerical data , Metals, Heavy/analysis , Population Growth , Humans , Metals , Trace Elements/analysis
5.
Chemosphere ; 78(4): 409-15, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20004461

ABSTRACT

This paper provides the first available information on the determination of the total mercury content in different Mediterranean calcareous soils by thermal decomposition, amalgamation and atomic absorption spectrophotometry. Fifty-three samples from five soil use groups (natural, dry land, greenhouse, irrigated and rice farming soils) were analysed. The results show that the levels of mercury in these soils were 9.4-1585mugkg(-1). Soil organic matter and the zinc equivalent index have been related to Hg content in soils, suggesting that Cu, Ni, Zn and Hg are of a similar origin. The background level (BL), geochemical baseline concentrations (GBC) and the reference value (RV) were established from natural soils. Calculations are according to the log-normal distribution criterion. The BL, GBC and RV values obtained were 25.1, 9.8-64.3, and 64.3mugkg(-1), respectively. The BL was similar to the baseline concentration in soils obtained at Admiralty Bay (Antarctica) (24.6mugkg(-1)) and a Spanish peat bog (Galicia) (22mugkg(-1)). These data show that rice farming soils (gleyic-calcaric Fluvisols, Fluvaquents), irrigated soils (calcaric Fluvisols, Xerofluvents) and some greenhouse soils (cumulic Antrosols) presented much higher levels, indicating contamination. Hg accumulation in these soils was associated with local anthropogenic sources.


Subject(s)
Calcium Carbonate/chemistry , Mercury/analysis , Soil Pollutants/analysis , Soil/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Oryza/chemistry , Soil Pollutants/chemistry , Water Pollutants, Chemical/chemistry
6.
J Agric Food Chem ; 49(6): 2966-72, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11409994

ABSTRACT

The nutritional composition of the marine eustigmatophyte Nannochloropsis spp. cultured in an indoor chemostat under continuous illumination was analyzed. Proximate composition, (moisture, ash, crude protein, available carbohydrates, fiber, lipids, and energy), nitrate, nucleic acid, mineral element (Na, K, Ca, Mg, Fe, Cu, Zn, Mn, Pb, Cd, Cr, Ni, Co, and S), fatty acid, and pigment (carotenoids and chlorophyll) concentrations were determined. On average, the biomass contained 37.6% (w/w) available carbohydrates, 28.8% crude protein, and 18.4% total lipids. Mineral in 100 g of dry biomass were as follows: Ca (972 mg), K (533 mg), Na (659 mg), Mg (316 mg), Zn (103 mg), Fe (136 mg), Mn (3.4 mg), Cu (35.0 mg), Ni (0.22 mg), and Co (<0.1 mg). Toxic heavy metal contents (Cd and Pb) were negligible. Fatty acid content was as follows (on percent dry weight): 0.6% of 14:0, 5.0% of 16:0; 4.7% of 16:1omega7, 3.8% of 18:1omega9, 0.4% of 18:2omega6; 0.7% of 20:4omega6, and 2.2% of 20:5omega3. Nutrient composition of the biomass was highly influenced by residence time in the photobioreactor. The biomass harvested for short residence times was richer in protein and eicosapentaenoic acid than biomass harvested for high residence time.


Subject(s)
Eukaryota/chemistry , Biomass , Eukaryota/growth & development , Nutritive Value , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...