Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Microbiol Resour Announc ; 12(11): e0065123, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37874142

ABSTRACT

We report the draft genome sequence of Pseudomonas sp. ER28, capable of utilizing the model naphthenic acid, cyclohexane pentanoic acid, as its sole carbon source. It was recovered from oil sands process-affected water containing cyclic and acyclic naphthenic acids. The genome size is 5.7 Mbp, and the G + C content is 60%.

2.
Genome ; 56(10): 612-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24237342

ABSTRACT

Oil sands tailings ponds harbor large amounts of tailings resulting from surface mining of bitumen and consist of water, sand, clays, residual bitumen, and hydrocarbon diluent. Oxygen ingress in these ponds is limited to the surface layers, causing most hydrocarbon degradation to be catalyzed by anaerobic, methanogenic microbial communities. This causes the evolution of large volumes of methane of up to 10(4) m(3)/day. A pyrosequencing survey of 16S rRNA amplicons from 10 samples obtained from different depths indicated the presence of a wide variety of taxa involved in anaerobic hydrocarbon degradation and methanogenesis, including the phyla Proteobacteria, Euryarchaeota, Firmicutes, Actinobacteria, Chloroflexi, and Bacteroidetes. Metagenomic sequencing of DNA isolated from one of these samples indicated a more diverse community than indicated by the 16S rRNA amplicon survey. Both methods indicated the same major phyla to be present. The metagenomic dataset indicated the presence of genes involved in the three stages of anaerobic aromatic hydrocarbon degradation, including genes for enzymes of the peripheral (upper), the central (lower), and the methanogenesis pathways. Upper pathway genes showed broad phylogenetic affiliation (Proteobacteria, Firmicutes, and Actinobacteria), whereas lower pathway genes were mostly affiliated with the Deltaproteobacteria. Genes for both hydrogenotrophic and acetotrophic methanogenesis were also found. The wide variety of taxa involved in initial hydrocarbon degradation through upper pathways may reflect the variety of residual bitumen and diluent components present in the tailings pond.


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , Hydrocarbons/metabolism , Metagenome , Methane/biosynthesis , Oil and Gas Fields/microbiology , Ponds/microbiology , Alberta , Archaea/classification , Archaea/genetics , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Metagenomics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Environ Sci Technol ; 47(18): 10708-17, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-23889694

ABSTRACT

Oil in subsurface reservoirs is biodegraded by resident microbial communities. Water-mediated, anaerobic conversion of hydrocarbons to methane and CO2, catalyzed by syntrophic bacteria and methanogenic archaea, is thought to be one of the dominant processes. We compared 160 microbial community compositions in ten hydrocarbon resource environments (HREs) and sequenced twelve metagenomes to characterize their metabolic potential. Although anaerobic communities were common, cores from oil sands and coal beds had unexpectedly high proportions of aerobic hydrocarbon-degrading bacteria. Likewise, most metagenomes had high proportions of genes for enzymes involved in aerobic hydrocarbon metabolism. Hence, although HREs may have been strictly anaerobic and typically methanogenic for much of their history, this may not hold today for coal beds and for the Alberta oil sands, one of the largest remaining oil reservoirs in the world. This finding may influence strategies to recover energy or chemicals from these HREs by in situ microbial processes.


Subject(s)
Archaea/genetics , Bacteria/genetics , Oil and Gas Fields/microbiology , RNA, Archaeal/genetics , Aerobiosis , Alberta , Archaea/classification , Archaea/metabolism , Bacteria/classification , Bacteria/metabolism , Genes, Archaeal , Genes, Bacterial , Hydrocarbons/metabolism , Metagenomics , RNA, Archaeal/metabolism , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
4.
Environ Sci Technol ; 45(2): 439-46, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21128661

ABSTRACT

Oil sands tailings ponds receive and store the solid and liquid waste from bitumen extraction and are managed to promote solids densification and water recycling. The ponds are highly stratified due to increasing solids content as a function of depth but can be impacted by tailings addition and removal and by convection due to microbial gas production. We characterized the microbial communities in relation to microbial activities as a function of depth in an active tailings pond routinely treated with gypsum (CaSO(4)·2H(2)O) to accelerate densification. Pyrosequencing of 16S rDNA gene sequences indicated that the aerobic surface layer, where the highest level of sulfate (6 mM) but no sulfide was detected, had a very different community profile than the rest of the pond. Deeper anaerobic layers were dominated by syntrophs (Pelotomaculum, Syntrophus, and Smithella spp.), sulfate- and sulfur-reducing bacteria (SRB, Desulfocapsa and Desulfurivibrio spp.), acetate- and H(2)-using methanogens, and a variety of other anaerobes that have been implicated in hydrocarbon utilization or iron and sulfur cycling. The SRB were most abundant from 10 to 14 mbs, bracketing the zone where the sulfate reduction rate was highest. Similarly, the most abundant methanogens and syntrophs identified as a function of depth closely mirrored the fluctuating methanogenesis rates. Methanogenesis was inhibited in laboratory incubations by nearly 50% when sulfate was supplied at pond-level concentrations suggesting that in situ sulfate reduction can substantially minimize methane emissions. Based on our data, we hypothesize that the emission of sulfide due to SRB activity in the gypsum treated pond is also limited due to its high solubility and oxidation in surface waters.


Subject(s)
Calcium Sulfate/chemistry , Carbon/metabolism , Environmental Pollutants/metabolism , Environmental Restoration and Remediation/methods , Petroleum/microbiology , Sulfur/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Base Sequence , Calcium Sulfate/metabolism , Carbon Cycle , Conservation of Natural Resources , Environmental Pollutants/chemistry , Extraction and Processing Industry , Fresh Water/chemistry , Fresh Water/microbiology , Hydrocarbons/chemistry , Hydrocarbons/metabolism , Industrial Waste/analysis , Molecular Sequence Data , Petroleum/metabolism , Phylogeny , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...