Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 22(12)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33279918

ABSTRACT

In this work, we start from a phenomenological Hamiltonian built from two known systems: the Hamiltonian of a pumped optomechanical system and the Jaynes-Cummings Hamiltonian. Using algebraic techniques we construct an approximate time evolution operator U^(t) for the forced optomechanical system (as a product of exponentials) and take the JC Hamiltonian as an interaction. We transform the later with U^(t) to obtain a generalized interaction picture Hamiltonian which can be linearized and whose time evolution operator is written in a product form. The analytic results are compared with purely numerical calculations using the full Hamiltonian and the agreement between them is remarkable.

2.
Sci Rep ; 9(1): 16800, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31727913

ABSTRACT

This contribution has two main purposes. First, using classical optics we show how to model two coupled quantum harmonic oscillators and two interacting quantized fields. Second, we present classical analogs of coupled harmonic oscillators that correspond to anisotropic quadratic graded indexed media in a rotated reference frame, and we use operator techniques, common to quantum mechanics, to solve the propagation of light through a particular type of graded indexed medium. Additionally, we show that the system presents phase transitions.

3.
Sci Rep ; 8(1): 8401, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29849080

ABSTRACT

Using the Ermakov-Lewis invariants appearing in KvN mechanics, the time-dependent frequency harmonic oscillator is studied. The analysis builds upon the operational dynamical model, from which it is possible to infer quantum or classical dynamics; thus, the mathematical structure governing the evolution will be the same in both cases. The Liouville operator associated with the time-dependent frequency harmonic oscillator can be transformed using an Ermakov-Lewis invariant, which is also time dependent and commutes with itself at any time. Finally, because the solution of the Ermakov equation is involved in the evolution of the classical state vector, we explore some analytical and numerical solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...