Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Struct Biol ; 213(4): 107779, 2021 12.
Article in English | MEDLINE | ID: mdl-34474158

ABSTRACT

Shelled pteropods, known as sea butterflies, are a group of small gastropods that spend their entire lives swimming and drifting in the open ocean. They build thin shells of aragonite, a metastable polymorph of calcium carbonate. Pteropod shells have been shown to experience dissolution and reduced thickness with a decrease in pH and therefore represent valuable bioindicators to monitor the impacts of ocean acidification. Over the past decades, several studies have highlighted the striking diversity of shell microstructures in pteropods, with exceptional mechanical properties, but their evolution and future in acidified waters remains uncertain. Here, we revisit the body-of-work on pteropod biomineralization, focusing on shell microstructures and their evolution. The evolutionary history of pteropods was recently resolved, and thus it is timely to examine their shell microstructures in such context. We analyse new images of shells from fossils and recent species providing a comprehensive overview of their structural diversity. Pteropod shells are made of the crossed lamellar and prismatic microstructures common in molluscs, but also of curved nanofibers which are proposed to form a helical three-dimensional structure. Our analyses suggest that the curved fibres emerged before the split between coiled and uncoiled pteropods and that they form incomplete to multiple helical turns. The curved fibres are seen as an important trait in the adaptation to a planktonic lifestyle, giving maximum strength and flexibility to the pteropod thin and lightweight shells. Finally, we also elucidate on the candidate biomineralization genes underpinning the shell diversity in these important indicators of ocean health.


Subject(s)
Animal Shells/metabolism , Biodiversity , Biological Evolution , Biomineralization , Gastropoda/metabolism , Animal Shells/chemistry , Animal Shells/ultrastructure , Animals , Calcium Carbonate/chemistry , Fossils , Gastropoda/classification , Gastropoda/growth & development , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Seawater/chemistry , Species Specificity
2.
R Soc Open Sci ; 8(8): 202265, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34386247

ABSTRACT

The atlantid heteropods represent the only predatory, aragonite shelled zooplankton. Atlantid shell production is likely to be sensitive to ocean acidification (OA), and yet we know little about their mechanisms of calcification, or their response to changing ocean chemistry. Here, we present the first study into calcification and gene expression effects of short-term OA exposure on juvenile atlantids across three pH scenarios: mid-1960s, ambient and 2050 conditions. Calcification and gene expression indicate a distinct response to each treatment. Shell extension and shell volume were reduced from the mid-1960s to ambient conditions, suggesting that calcification is already limited in today's South Atlantic. However, shell extension increased from ambient to 2050 conditions. Genes involved in protein synthesis were consistently upregulated, whereas genes involved in organismal development were downregulated with decreasing pH. Biomineralization genes were upregulated in the mid-1960s and 2050 conditions, suggesting that any deviation from ambient carbonate chemistry causes stress, resulting in rapid shell growth. We conclude that atlantid calcification is likely to be negatively affected by future OA. However, we also found that plentiful food increased shell extension and shell thickness, and so synergistic factors are likely to impact the resilience of atlantids in an acidifying ocean.

3.
BMC Genomics ; 21(1): 11, 2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31900119

ABSTRACT

BACKGROUND: Pteropods are planktonic gastropods that are considered as bio-indicators to monitor impacts of ocean acidification on marine ecosystems. In order to gain insight into their adaptive potential to future environmental changes, it is critical to use adequate molecular tools to delimit species and population boundaries and to assess their genetic connectivity. We developed a set of target capture probes to investigate genetic variation across their large-sized genome using a population genomics approach. Target capture is less limited by DNA amount and quality than other genome-reduced representation protocols, and has the potential for application on closely related species based on probes designed from one species. RESULTS: We generated the first draft genome of a pteropod, Limacina bulimoides, resulting in a fragmented assembly of 2.9 Gbp. Using this assembly and a transcriptome as a reference, we designed a set of 2899 genome-wide target capture probes for L. bulimoides. The set of probes includes 2812 single copy nuclear targets, the 28S rDNA sequence, ten mitochondrial genes, 35 candidate biomineralisation genes, and 41 non-coding regions. The capture reaction performed with these probes was highly efficient with 97% of the targets recovered on the focal species. A total of 137,938 single nucleotide polymorphism markers were obtained from the captured sequences across a test panel of nine individuals. The probes set was also tested on four related species: L. trochiformis, L. lesueurii, L. helicina, and Heliconoides inflatus, showing an exponential decrease in capture efficiency with increased genetic distance from the focal species. Sixty-two targets were sufficiently conserved to be recovered consistently across all five species. CONCLUSION: The target capture protocol used in this study was effective in capturing genome-wide variation in the focal species L. bulimoides, suitable for population genomic analyses, while providing insights into conserved genomic regions in related species. The present study provides new genomic resources for pteropods and supports the use of target capture-based protocols to efficiently characterise genomic variation in small non-model organisms with large genomes.


Subject(s)
Gastropoda/genetics , Genome/genetics , Marine Biology , Oceans and Seas , Animals , Gastropoda/metabolism , Genomics/trends , Hydrogen-Ion Concentration , Phylogeny , Polymorphism, Single Nucleotide/genetics , Seawater/chemistry , Species Specificity , Transcriptome/genetics
4.
Mol Biol Evol ; 36(12): 2714-2736, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31350897

ABSTRACT

Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of highly resistant, dormant endospores. Endospores allow environmental persistence, dissemination and for pathogens, are also infection vehicles. In both the model Bacillus subtilis, an aerobic organism, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes. Their expression is coordinated between the forespore and the mother cell, the two cells that participate in the process, and is kept in close register with the course of morphogenesis. The evolutionary mechanisms by which sporulation emerged and evolved in these two species, and more broadly across Firmicutes, remain largely unknown. Here, we trace the origin and evolution of sporulation using the genes known to be involved in the process in B. subtilis and C. difficile, and estimating their gain-loss dynamics in a comprehensive bacterial macroevolutionary framework. We show that sporulation evolution was driven by two major gene gain events, the first at the base of the Firmicutes and the second at the base of the B. subtilis group and within the Peptostreptococcaceae family, which includes C. difficile. We also show that early and late sporulation regulons have been coevolving and that sporulation genes entail greater innovation in B. subtilis with many Bacilli lineage-restricted genes. In contrast, C. difficile more often recruits new sporulation genes by horizontal gene transfer, which reflects both its highly mobile genome, the complexity of the gut microbiota, and an adjustment of sporulation to the gut ecosystem.


Subject(s)
Bacillus subtilis/genetics , Biological Evolution , Clostridioides difficile/genetics , Spores, Bacterial , Amino Acid Sequence , Genes, Bacterial
5.
Genome Announc ; 3(2)2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25858824

ABSTRACT

Here, we report two genome sequences of endospore-forming bacteria isolated from the rice fields of Comporta, Portugal, identified as Bacillus aryabhattai C765 and Bacillus aerophilus C772. Both species were previously identified in air samples from the upper atmosphere, but our findings suggest their presence in a wider range of environmental niches.

6.
PLoS One ; 9(6): e97454, 2014.
Article in English | MEDLINE | ID: mdl-24893046

ABSTRACT

The scleractinian coral Acropora millepora is one of the most studied species from the Great Barrier Reef. This species has been used to understand evolutionary, immune and developmental processes in cnidarians. It has also been subject of several ecological studies in order to elucidate reef responses to environmental changes such as temperature rise and ocean acidification (OA). In these contexts, several nucleic acid resources were made available. When combined to a recent proteomic analysis of the coral skeletal organic matrix (SOM), they enabled the identification of several skeletal matrix proteins, making A. millepora into an emerging model for biomineralization studies. Here we describe the skeletal microstructure of A. millepora skeleton, together with a functional and biochemical characterization of its occluded SOM that focuses on the protein and saccharidic moieties. The skeletal matrix proteins show a large range of isoelectric points, compositional patterns and signatures. Besides secreted proteins, there are a significant number of proteins with membrane attachment sites such as transmembrane domains and GPI anchors as well as proteins with integrin binding sites. These features show that the skeletal proteins must have strong adhesion properties in order to function in the calcifying space. Moreover this data suggest a molecular connection between the calcifying epithelium and the skeletal tissue during biocalcification. In terms of sugar moieties, the enrichment of the SOM in arabinose is striking, and the monosaccharide composition exhibits the same signature as that of mucus of acroporid corals. Finally, we observe that the interaction of the acetic acid soluble SOM on the morphology of in vitro grown CaCO3 crystals is very pronounced when compared with the calcifying matrices of some mollusks. In light of these results, we wish to commend Acropora millepora as a model for biocalcification studies in scleractinians, from molecular and structural viewpoints.


Subject(s)
Anthozoa/anatomy & histology , Anthozoa/metabolism , Bone and Bones/anatomy & histology , Bone and Bones/metabolism , Acetic Acid/pharmacology , Amination/drug effects , Animals , Anthozoa/drug effects , Anthozoa/ultrastructure , Bone and Bones/drug effects , Bone and Bones/ultrastructure , Calcium Carbonate/metabolism , Crystallization , Gels , Monosaccharides/analysis , Proteins/metabolism , Solubility , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
7.
Proteomics ; 13(21): 3109-16, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23970493

ABSTRACT

In a recent editorial (Proc. Natl. Acad. Sci., 2013 110, E2144-E2146) and elsewhere, questions have been raised regarding the experimental practices in relation to the proteomic analysis of organic matrices associated to the biomineralized CaCO3 skeletons of metazoans such as molluscan shells and coral skeletons. Indeed, although the use of new high sensitivity MS technology potentially allows to identify a greater number of proteins, it is also equally (or even more) sensitive to contamination of residual proteins from soft tissues, which are in close contact with the biomineral. Based on our own past and present experimental know-how-observations that are reproducible and coherent with the current understanding of extracellular biomineralization processes-we are convinced that a careful and appropriate cleaning of biominerals prior to any analysis is crucial for accurate proteomic investigations and subsequent pertinent interpretation of the results. Our goal is to alert the scientific community about the associated bias that definitely should be avoided, and to provide critical recommendations on sample preparation and experimental design, in order to better take advantage of the aptness of proteomic approaches aiming at improving our understanding of the molecular mechanisms in biomineralization.


Subject(s)
Animal Shells/chemistry , Calcium Carbonate/chemistry , Proteins/chemistry , Proteomics/methods , Proteomics/standards , Animals , Anthozoa/chemistry , Calcification, Physiologic , Extracellular Matrix/chemistry , Mollusca/chemistry
8.
Mol Biol Evol ; 30(9): 2099-112, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23765379

ABSTRACT

In corals, biocalcification is a major function that may be drastically affected by ocean acidification (OA). Scleractinian corals grow by building up aragonitic exoskeletons that provide support and protection for soft tissues. Although this process has been extensively studied, the molecular basis of biocalcification is poorly understood. Notably lacking is a comprehensive catalog of the skeleton-occluded proteins-the skeletal organic matrix proteins (SOMPs) that are thought to regulate the mineral deposition. Using a combination of proteomics and transcriptomics, we report the first survey of such proteins in the staghorn coral Acropora millepora. The organic matrix (OM) extracted from the coral skeleton was analyzed by mass spectrometry and bioinformatics, enabling the identification of 36 SOMPs. These results provide novel insights into the molecular basis of coral calcification and the macroevolution of metazoan calcifying systems, whereas establishing a platform for studying the impact of OA at molecular level. Besides secreted proteins, extracellular regions of transmembrane proteins are also present, suggesting a close control of aragonite deposition by the calicoblastic epithelium. In addition to the expected SOMPs (Asp/Glu-rich, galaxins), the skeletal repertoire included several proteins containing known extracellular matrix domains. From an evolutionary perspective, the number of coral-specific proteins is low, many SOMPs having counterparts in the noncalcifying cnidarians. Extending the comparison with the skeletal OM proteomes of other metazoans allowed the identification of a pool of functional domains shared between phyla. These data suggest that co-option and domain shuffling may be general mechanisms by which the trait of calcification has evolved.


Subject(s)
Anthozoa/genetics , Calcification, Physiologic/genetics , Evolution, Molecular , Phylogeny , Proteome/genetics , Amino Acid Sequence , Animals , Anthozoa/classification , Anthozoa/metabolism , Calcium Carbonate/metabolism , Extracellular Matrix/chemistry , Mass Spectrometry , Molecular Sequence Annotation , Molecular Sequence Data , Protein Structure, Tertiary , Proteome/chemistry , Proteome/classification , Proteome/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
10.
FEBS J ; 280(1): 214-32, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23145877

ABSTRACT

Proteins that are occluded within the molluscan shell, the so-called shell matrix proteins (SMPs), are an assemblage of biomolecules attractive to study for several reasons. They increase the fracture resistance of the shell by several orders of magnitude, determine the polymorph of CaCO(3) deposited, and regulate crystal nucleation, growth initiation and termination. In addition, they are thought to control the shell microstructures. Understanding how these proteins have evolved is also likely to provide deep insight into events that supported the diversification and expansion of metazoan life during the Cambrian radiation 543 million years ago. Here, we present an analysis of SMPs isolated form the CaCO(3) shell of the limpet Lottia gigantea, a gastropod that constructs an aragonitic cross-lamellar shell. We identified 39 SMPs by combining proteomic analysis with genomic and transcriptomic database interrogations. Among these proteins are various low-complexity domain-containing proteins, enzymes such as peroxidases, carbonic anhydrases and chitinases, acidic calcium-binding proteins and protease inhibitors. This list is likely to contain the most abundant SMPs of the shell matrix. It reveals the presence of both highly conserved and lineage-specific biomineralizing proteins. This mosaic evolutionary pattern suggests that there may be an ancestral molluscan SMP set upon which different conchiferan lineages have elaborated to produce the diversity of shell microstructures we observe nowadays.


Subject(s)
Animal Shells/metabolism , Gastropoda/metabolism , Proteome/metabolism , Amino Acid Sequence , Animal Shells/enzymology , Animal Shells/ultrastructure , Animals , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/isolation & purification , Carbonic Anhydrases/metabolism , Cyclophilins/isolation & purification , Cyclophilins/metabolism , Electrophoresis, Polyacrylamide Gel , Epidermal Growth Factor/chemistry , Epidermal Growth Factor/isolation & purification , Epidermal Growth Factor/metabolism , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/isolation & purification , Extracellular Matrix Proteins/metabolism , Glycoside Hydrolases/isolation & purification , Glycoside Hydrolases/metabolism , Molecular Sequence Data , Peptide Fragments/chemistry , Peroxidases/chemistry , Peroxidases/isolation & purification , Peroxidases/metabolism , Protein Structure, Tertiary , Proteome/chemistry , Proteome/isolation & purification , Sequence Analysis, Protein , Sequence Homology, Amino Acid , Tandem Mass Spectrometry
11.
Chembiochem ; 13(7): 1067-78, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22474002

ABSTRACT

The formation of the molluskan shell is regulated by an array of extracellular proteins secreted by the calcifying epithelial cells of the mantle. These proteins remain occluded within the recently formed biominerals. To date, many shell proteins have been retrieved, but only a few of them, such as nacreins, have clearly identified functions. In this particular case, by combining molecular biology and biochemical approaches, we performed the molecular characterization of a novel protein that we named Upsalin, associated with the nacreous shell of the freshwater mussel Unio pictorum. The full sequence of the upsalin transcript was obtained by RT-PCR and 5'/3' RACE, and the expression pattern of the transcript was studied by PCR and qPCR. Upsalin is a 12 kDa protein with a basic theoretical pI. The presence of Upsalin in the shell was demonstrated by extraction of the acetic-acid-soluble nacre matrix, purification of a shell protein fraction by mono-dimensional preparative SDS-PAGE, and by submitting this fraction, after trypsic digestion, to nano-LC-MS/MS. In vitro experiments with the purified protein showed that it interferes poorly with the precipitation of calcium carbonate. Homology searches also could not affiliate Upsalin to any other protein of known function, leaving open the question of its exact role in shell formation. An antibody raised against an immunogenic peptide of Upsalin was found to be specific to this protein and was subsequently assayed for immunogold localization of the target protein in the shell, revealing the ubiquitous presence of Upsalin in the nacreous and prismatic layers. Recently, with the application of high-throughput proteomic studies to shells, the number of candidate proteins without clear functions has been increasing exponentially. The Upsalin example highlights the crucial need, for the scientific community dealing with biomineralization in general, to dedicate the coming years to designing experimental approaches, such as gene silencing, that focus on the functions of mineral-associated proteins.


Subject(s)
Minerals/chemistry , Minerals/metabolism , Proteins/chemistry , Proteins/metabolism , Amino Acid Sequence , Animals , Base Sequence , Electrophoresis , Microscopy, Electron, Scanning , Molecular Sequence Data , Mollusca , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...