Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 26(22): 16833-40, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20939556

ABSTRACT

An investigation is described on the electric-field-induced structures in colloidal dispersions. Both rheological determinations and direct microscopic observations are used with that aim. The starting point of this study is the so-called electrorheological (ER) effect, consisting of the mechanical reinforcing of a fluid or suspension due to formation of chains of molecules or particles after being polarized by the action of the field. One macroscopic manifestation of this phenomenon is the transformation of the fluid from a typically Newtonian behavior to a viscoelastic material, with finite yield stress and high elastic modulus. The systems investigated were suspensions of elongated goethite (ß-FeOOH) particles in silicone oils with varying amounts of silica nanoparticles. The results showed the rather unusual behavior known as "negative ER effect", which can be best described by saying that the application of an electric field reduces the yield stress and the elastic modulus, that is, produces destruction of structures rather than their build up. The negative behavior is also found for suspensions of other inorganic powders, including hematite and quartz. On the contrary, the usual positive ER response is found for suspensions of cellulose and montmorillonite clay. The same happens if goethite suspensions are prepared in high volume fractions, high-viscosity fluids, or both. All of the results found are compatible with the so-called interfacial model of electrorheology: the reduction of the yield stress of goethite suspensions when the applied field is high enough is the consequence of particle migration toward the electrodes because of charge injection and subsequent electrophoresis. The migration leaves the gap between the electrodes devoid of particles and explains the decrease in yield stress. The addition of silica nanoparticles contributes to reduce the strength of this effect by hindering the charging and making it necessary to increase the field strength to observe the negative effect. The model appears to also be applicable to cellulose, although the positive response found for such particles is explained by their large size: larger diameters bring about larger attraction forces between particles, leading to a tendency to produce strong aggregates. This is likely to occur in suspensions of colloids which, because of their relatively high electrical conductivity, tend to acquire charge even in such nonpolar liquids as silicone oils.

2.
J Colloid Interface Sci ; 297(1): 317-21, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16297929

ABSTRACT

Data are presented on the kinetics, electrokinetics, and surface free energy in the process of adsorption of polyethyleneimine (PEI) as a pretreatment of Leacril, later dyed with the reactive dye Remazol Brilliant Blue R (RBBR). The electrokinetic potential of Leacril is negative, due probably to the presence of sulfonate and sulfate end-group onto Leacril fibers. The zeta potential of Leacril decreases in absolute value as a function of NaCl concentration in solution, probably because of compression of the electrical double layer. The zeta potential of Leacril as a function of the concentration of PEI in solution increases because of the adsorption of PEI ions through chemical reaction between the sulfonate end-groups of Leacril and the amine groups of PEI. The adsorption kinetics shows that an increase in the concentration of PEI, brings about an increase in the amount of RBBR adsorbed onto the fiber. This may be an indication of the chemical reaction between the reactive groups of the polyelectrolyte and dye molecules. The behavior of the surface free energy of the systems involved confirms these conclusions.

3.
Langmuir ; 21(10): 4410-9, 2005 May 10.
Article in English | MEDLINE | ID: mdl-16032854

ABSTRACT

This work is devoted to the preparation of magnetite-covered clay particles in aqueous medium. For this purpose, magnetite nanoparticles were synthesized by a coprecipitation method. These magnetic particles are adhered to sodium montmorillonite (NaMt) particles in aqueous suspensions of both materials, by appropriate control of the electrolyte concentrations. The best condition to produce such heteroaggregation corresponds to acid pH and approximately 1 mol/L ionic strength, when the electrokinetic potentials (zeta-potential) of both NaMt and Fe3O4 particles have high enough and opposite sign, as demonstrated from electrophoresis measurements. When a layer of magnetite re-covers the clay particles, the application of an external magnetic field induces a magnetic moment in clay-magnetite particles parallel to the external magnetic flux density. The sedimentation behavior of such magnetic particles is studied in the absence or presence of an external magnetic field in a vertical direction. The whole sedimentation behavior is also strongly affected by the formation of big flocculi in the suspensions under the action of internal colloidal interactions. van der Waals and dipole-dipole magnetic attractions between magnetite-covered clay particles dominate the flocculation processes. The different relative orientation of the clay-magnetite particles (edge-to-edge, face-to-edge, and face-to-face) are discussed in order to predict the most favored flocculi configuration.

4.
J Colloid Interface Sci ; 268(1): 85-95, 2003 Dec 01.
Article in English | MEDLINE | ID: mdl-14611777

ABSTRACT

This work deals with the effect of humic acid (HA) adsorption on the interfacial properties, the stability, and the rheology of aqueous iron oxide (hematite) suspensions. It is first of all demonstrated that HA effectively adsorbs onto hematite, mainly at acid pH. Since the charge of the HA chains is negative, it will be electrostatically attracted to the hematite surface below the point of zero charge of the particles, when they are positively charged. Electrophoresis measurements of hematite suspensions as a function of pH in the presence and absence of HA clearly demonstrate the adsorption of negatively charged entities on the oxide. Since the HA-covered particles can be thought of as "soft" colloids, Ohshima's theory was used to gain information on the surface potential and the charge density of the HA layer (H. Ohshima, in: A.V. Delgado (Ed.), Interfacial Electrokinetics and Electrophoresis, Dekker, New York, 2002, p. 123). A different procedure was also used to ascertain the degree of modification experienced by the hematite surface when placed in contact with HA solutions. The contact angles of selected liquids on pretreated hematite layers lead to the conclusion that the humic acid molecules impart to the particles a significant electron-donor character, in turn increasing their hydrophilicity. All this amount of information is used in the work for the interpretation of the rheological properties of hematite suspensions; the results are consistent with a stabilizing effect of HA adsorption on the suspensions, mainly as a consequence of the increased electrostatic repulsion between particles.

5.
J Colloid Interface Sci ; 265(2): 227-33, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-12962654

ABSTRACT

Data are presented on the adsorption of the colloidal dye Disperse Blue 3 onto polyester fabric (Dacron 54, Stile 777), the fabric being pretreated with different amounts of the surfactant potassium ethyl xanthogenate (PEX). This study has been made by means of both the evolution of the zeta potential of the fiber/dye interface and the behaviour of the surface free energy components of the above systems. The kinetics of adsorption of the process of dyeing, using 10(-4) M of PEX in the pretreatment of the fabric, shows that increasing temperature of adsorption decrease the amount of colloidal dye adsorbed onto the fabric. This fact shows that the principal mechanism involved in this adsorption process is physical in nature. The adsorption isotherms of the colloidal dye onto polyester pretreated with different amounts of PEX, shows that the adsorption of the dye is favored with the increase in the concentration of the surfactant used in the pretreatment. This fact shows that the pretreatment with PEX is a very interesting aspect of interest in textile industry. The zeta potential of the system fabric/surfactant shows that this parameter is negative (about -25 mV) for the untreated fiber and decreases in absolute value for increasing concentration of the surfactant on the fiber, the value of the zeta potential of the system being -5 mV for 10(-2) M of PEX. This behavior can be explained for the chemical reaction nucleophilic attack between the carboxyl groups of polyester, ionized at pH 8, and the thiocarbonyl group of the xanthogenate ion. On the other hand, the zeta potential of the system polyester pretreated with PEX/Disperse Blue 3 at increasing concentrations of the surfactant and the dye shows that this parameter increases its negative value strongly with increasing concentration of the surfactant used in the treatment. This can be explained for the hydrogen bonds between the hydroxy groups of the dye and the S- ions of the thiocarbonyl group of the surfactant preadsorbed onto the fiber.

6.
J Colloid Interface Sci ; 235(2): 251-259, 2001 Mar 15.
Article in English | MEDLINE | ID: mdl-11254299

ABSTRACT

In this work we investigate some aspects of the rheological behavior of sodium montmorillonite (NaMt) suspensions in the pH range 3 to 9, of NaCl concentrations between 10(-3) and 10(-1) M, and of solid concentrations between 5 and 11% w/v. Three kinds of experiments were performed: steady-state viscometry, oscillatory test, and creep recovery. The physical quantities of interest were the yield stress sigma(y) of the suspensions, the elastic rigidity modulus G', and the instantaneous elastic compliance. Furthermore, G' was obtained from oscillatory tests in three different experiments: determination of the viscoelastic linear region, oscillograms, and the gelation process. All quantities were found to scale with the concentration of solids, C, according to a power law of the form Y=k(y)C(n). The exponents n were found to change from approximately 3 to approximately 6 when the pH was increased from 3 to 9 (at constant ionic strength 10(-2) M), although values as high as 10 were estimated when the NaCl concentration was reduced to 1 mM. Such values of n correlate well with the characteristics of the edge-to-face (E-F), edge-to-edge (E-E), and face-to-face (F-F) interparticle interactions. The minimum values of n correspond to maximum E-F attractions, whereas the largest n are associated with strong F-F repulsions. Copyright 2001 Academic Press.

SELECTION OF CITATIONS
SEARCH DETAIL
...