Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Nefrologia (Engl Ed) ; 44(1): 23-31, 2024.
Article in English | MEDLINE | ID: mdl-38350738

ABSTRACT

Renal diseases associated with hypomagnesemia are a complex and diverse group of tubulopathies caused by mutations in genes encoding proteins that are expressed in the thick ascending limb of the loop of Henle and in the distal convoluted tubule. In this paper, we review the initial description, the clinical expressiveness and etiology of four of the first hypomagnesemic tubulopathies described: type 3 Bartter and Gitelman diseases, Autosomal recessive hypomagnesemia with secondary hypocalcemia and Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. The basic biochemical patterns observed in renal tubular hypomagnesemias and the modalities of transport and interaction that occur between the transporters involved in the reabsorption of magnesium in the distal convoluted tubule are described below. Finally, the recent report of a new renal disease with hypomagnesemia, type 2 hypomagnesemia with secondary hypocalcemia caused by reduced TRPM7 channel activity is described.


Subject(s)
Hypocalcemia , Magnesium Deficiency/congenital , Nephrocalcinosis , TRPM Cation Channels , Humans , Magnesium , Nephrocalcinosis/genetics , Kidney Tubules , Protein Serine-Threonine Kinases , TRPM Cation Channels/genetics
2.
Nefrología (Madrid) ; 44(1): 23-31, ene.- feb. 2024. ilus
Article in Spanish | IBECS | ID: ibc-229418

ABSTRACT

Las enfermedades renales que cursan con hipomagnesemia son un grupo complejo y variopinto de tubulopatías producidas por mutaciones en genes que codifican proteínas que se expresan en la rama gruesa ascendente del asa de Henle y en el túbulo contorneado distal. En el presente artículo revisamos la descripción inicial, la expresividad clínica y la etiología de cuatro de las primeras causas de tubulopatías hipomagnesémicas que se describieron: las enfermedades de Bartter tipo 3 y Gitelman, la hipomagnesemia con hipocalcemia secundaria autosómica recesiva y la hipomagnesemia familiar con hipercalciuria y nefrocalcinosis. A continuación, se describen los patrones bioquímicos básicos que se observan en las hipomagnesemias tubulares renales y las modalidades de transporte e interacción que concurren entre los transportadores implicados en la reabsorción de magnesio en el túbulo contorneado distal. Finalmente, se comunica la reciente descripción de una nueva tubulopatía hipomagnesémica, la hipomagnesemia con hipocalcemia secundaria tipo 2 causada por una reducción de la actividad del canal TRPM7 (AU)


Renal diseases associated with hypomagnesemia are a complex and diverse group of tubulopathies caused by mutations in genes encoding proteins that are expressed in the thick ascending limb of the loop of Henle and in the distal convoluted tubule. In this paper, we review the initial description, the clinical expressiveness and etiology of four of the first hypomagnesemic tubulopathies described: Type 3 Bartter and Gitelman diseases,Autosomal recessive hypomagnesemia with secondary hypocalcemia and Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. The basic biochemical patterns observed in renal tubular hypomagnesemias and the modalities of transport and interaction that occur between the transporters involved in the reabsorption of magnesium in the distal convoluted tubule are described below. Finally, the recent report of a new renal disease with hypomagnesemia, Type 2 hypomagnesemia with secondary hypocalcemia caused by reduced TRPM7 channel activity is described (AU)


Subject(s)
Humans , Magnesium Deficiency/genetics , Loop of Henle/metabolism , Kidney Tubules, Distal/metabolism
3.
Biomedicines ; 11(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38002082

ABSTRACT

Dent disease (DD) is an X-linked renal tubulopathy characterized by low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis and progressive renal failure. Two-thirds of cases are associated with inactivating variants in the CLCN5 gene (Dent disease 1, DD1) and a few present variants in the OCRL gene (Dent disease 2, DD2). The aim of the present study was to test the effect on the pre-mRNA splicing process of DD variants, described here or in the literature, and describe the clinical and genotypic features of thirteen unrelated patients with suspected DD. All patients presented tubular proteinuria, ten presented hypercalciuria and five had nephrolithiasis or nephrocalcinosis. CLCN5 and OCRL genes were analyzed by Sanger sequencing. Nine patients showed variants in CLCN5 and four in OCRL; eight of these were new. Bioinformatics tools were used to select fifteen variants with a potential effect on pre-mRNA splicing from our patients' group and from the literature, and were experimentally tested using minigene assays. Results showed that three exonic missense mutations and two intronic variants affect the mRNA splicing process. Our findings widen the genotypic spectrum of DD and provide insight into the impact of variants causing DD.

4.
Genes (Basel) ; 14(9)2023 09 20.
Article in English | MEDLINE | ID: mdl-37761963

ABSTRACT

Renal hypouricemia (RHUC) is a rare hereditary disorder caused by loss-of-function mutations in the SLC22A12 (RHUC type 1) or SLC2A9 (RHUC type 2) genes, encoding urate transporters URAT1 and GLUT9, respectively, that reabsorb urate in the renal proximal tubule. The characteristics of this disorder are low serum urate levels, high renal fractional excretion of urate, and occasional severe complications such as nephrolithiasis and exercise-induced acute renal failure. In this study, we report two Spanish (Caucasian) siblings and a Pakistani boy with clinical characteristics compatible with RHUC. Whole-exome sequencing (WES) analysis identified two homozygous variants: a novel pathogenic SLC22A12 variant, c.1523G>A; p.(S508N), in the two Caucasian siblings and a previously reported SLC2A9 variant, c.646G>A; p.(G216R), in the Pakistani boy. Our findings suggest that these two mutations cause RHUC through loss of urate reabsorption and extend the SLC22A12 mutation spectrum. In addition, this work further emphasizes the importance of WES analysis in clinical settings.


Subject(s)
Organic Anion Transporters , Renal Tubular Transport, Inborn Errors , Male , Humans , Exome Sequencing , Uric Acid , Renal Tubular Transport, Inborn Errors/genetics , Computational Biology , Rare Diseases , Organic Anion Transporters/genetics , Organic Cation Transport Proteins/genetics , Glucose Transport Proteins, Facilitative/genetics
5.
Int J Mol Sci ; 24(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37176161

ABSTRACT

Renal hypouricemia (RHUC) is a rare inherited disorder characterized by impaired urate reabsorption in the proximal tubule resulting in low urate serum levels and increased urate excretion. Some patients may present severe complications such as exercise-induced acute renal failure and nephrolithiasis. RHUC is caused by inactivating mutations in the SLC22A12 (RHUC type 1) or SLC2A9 (RHUC type 2) genes, which encode urate transporters URAT1 and GLUT9, respectively. In this study, our goal was to identify mutations associated with twenty-one new cases with RHUC through direct sequencing of SLC22A12 and SLC2A9 coding exons. Additionally, we carried out an SNPs-haplotype analysis to determine whether the rare SLC2A9 variant c.374C>T; p.(T125M), which is recurrent in Spanish families with RHUC type 2, had a common-linked haplotype. Six intragenic informative SNPs were analyzed using PCR amplification from genomic DNA and direct sequencing. Our results showed that ten patients carried the SLC22A12 mutation c.1400C>T; p.(T467M), ten presented the SLC2A9 mutation c.374C>T, and one carried a new SLC2A9 heterozygous mutation, c.593G>A; p.(R198H). Patients carrying the SLC2A9 mutation c.374C>T share a common-linked haplotype, confirming that it emerged due to a founder effect.


Subject(s)
Kidney Calculi , Organic Anion Transporters , Humans , Uric Acid , Founder Effect , Glucose Transport Proteins, Facilitative/genetics , Organic Cation Transport Proteins/genetics , Organic Anion Transporters/genetics
6.
Nefrologia (Engl Ed) ; 42(3): 273-279, 2022.
Article in English | MEDLINE | ID: mdl-36210617

ABSTRACT

Gout is recurrent inflammatory arthritis caused by the deposition of monosodium urate crystals in the joints. The risk factors that predispose to suffering from gout include non-modifiable factors such as gender, age, ethnicity and genetics, and modifiable factors such as diet and lifestyle. It has been shown that the heritability of uric acid levels in the blood is greater than 30%, which indicates that genetics play a key role in these levels. Hyperuricaemia is often a consequence of reduced renal urate excretion since more than 70% is excreted by the kidneys, mainly through the proximal tubule. The mechanisms that explain that hyperuricaemia associated with reduced renal urate excretion is, to a large extent, a proximal renal tubular disorder, have begun to be understood following the identification of two genes that encode the URAT1 and GLUT9 transporters. When they are carriers of loss-of-function mutations, they explain the two known variants of renal tubular hypouricaemia. Some polymorphisms in these genes may have an opposite gain-of-function effect, with a consequent increase in urate reabsorption. Conversely, loss-of-function polymorphisms in other genes that encode transporters involved in urate excretion (ABCG2, ABCC4) can lead to hyperuricaemia. Genome-wide association study (GWAS) methods have made it possible to locate new gout-related loci associated with reduced renal urate excretion (NIPAL1, FAM35A).


Subject(s)
Gout , Hyperuricemia , Kidney Diseases , Genome-Wide Association Study , Gout/genetics , Humans , Hyperuricemia/genetics , Kidney Diseases/complications , Nephrologists , Renal Elimination , Uric Acid
7.
Nefrología (Madrid) ; 42(3): 1-7, Mayo-Junio, 2022. graf
Article in Spanish | IBECS | ID: ibc-205765

ABSTRACT

La gota es una artritis inflamatoria recurrente provocada por el depósito de cristales de urato monosódico en las articulaciones. Entre los factores de riesgo que predisponen a padecer gota se encuentran aquellos no modificables como sexo, edad, raza y genética y los modificables como dieta y estilo de vida. Se ha indicado que la heredabilidad de los niveles de ácido úrico en sangre es superior al 30%, lo que indica que la genética tiene un papel clave en dichos niveles.La hiperuricemia es a menudo una consecuencia de la reducción de la excreción renal de urato, ya que más del 70% se excreta por el riñón, principalmente, por el túbulo proximal.Los mecanismos que explican que la hiperuricemia asociada a la reducción de la excreción renal de urato es, en gran medida, una tubulopatía proximal, se han empezado a conocer al saberse la existencia de dos genes que codifican los transportadores URAT1 y GLUT9 que, cuando son portadores de mutaciones de pérdida de función, explican las dos variantes conocidas de hipouricemia tubular renal.Algunos polimorfismos presentes en esos genes pueden tener un efecto contrario de ganancia de función, con la consecuencia de un incremento en la reabsorción de urato. A la inversa, polimorfismos de pérdida de función en otros genes que codifican trasportadores implicados en la excreción de urato (ABCG2, ABCC4) favorecen la hiperuricemia.Los métodos de asociación genómica amplia (GWAS) han permitido localizar nuevos locus relacionados con gota asociada a reducción de la excreción renal de urato (NIPAL1, FAM35A). (AU)


Gout is recurrent inflammatory arthritis caused by the deposition of monosodium urate crystals in the joints. The risk factors that predispose to suffering from gout include non-modifiable factors such as gender, age, ethnicity and genetics, and modifiable factors such as diet and lifestyle. It has been shown that the heritability of uric acid levels in the blood is greater than 30%, which indicates that genetics play a key role in these levels.Hyperuricaemia is often a consequence of reduced renal urate excretion since more than 70% is excreted by the kidneys, mainly through the proximal tubule.The mechanisms that explain that hyperuricaemia associated with reduced renal urate excretion is, to a large extent, a proximal renal tubular disorder, have begun to be understood following the identification of two genes that encode the URAT1 and GLUT9 transporters. When they are carriers of loss-of-function mutations, they explain the two known variants of renal tubular hypouricaemia.Some polymorphisms in these genes may have an opposite gain-of-function effect, with a consequent increase in urate reabsorption. Conversely, loss-of-function polymorphisms in other genes that encode transporters involved in urate excretion (ABCG2, ABCC4) can lead to hyperuricaemia.Genome-wide association study (GWAS) methods have made it possible to locate new gout-related loci associated with reduced renal urate excretion (NIPAL1, FAM35A). (AU)


Subject(s)
Humans , Nephrology , Gout/diagnosis , Gout/therapy , Uric Acid , Kidney Tubules , Review Literature as Topic
8.
Nefrologia (Engl Ed) ; 2021 Sep 06.
Article in English, Spanish | MEDLINE | ID: mdl-34503865

ABSTRACT

Gout is recurrent inflammatory arthritis caused by the deposition of monosodium urate crystals in the joints. The risk factors that predispose to suffering from gout include non-modifiable factors such as gender, age, ethnicity and genetics, and modifiable factors such as diet and lifestyle. It has been shown that the heritability of uric acid levels in the blood is greater than 30%, which indicates that genetics play a key role in these levels. Hyperuricaemia is often a consequence of reduced renal urate excretion since more than 70% is excreted by the kidneys, mainly through the proximal tubule. The mechanisms that explain that hyperuricaemia associated with reduced renal urate excretion is, to a large extent, a proximal renal tubular disorder, have begun to be understood following the identification of two genes that encode the URAT1 and GLUT9 transporters. When they are carriers of loss-of-function mutations, they explain the two known variants of renal tubular hypouricaemia. Some polymorphisms in these genes may have an opposite gain-of-function effect, with a consequent increase in urate reabsorption. Conversely, loss-of-function polymorphisms in other genes that encode transporters involved in urate excretion (ABCG2, ABCC4) can lead to hyperuricaemia. Genome-wide association study (GWAS) methods have made it possible to locate new gout-related loci associated with reduced renal urate excretion (NIPAL1, FAM35A).

9.
Intractable Rare Dis Res ; 9(4): 222-228, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33139981

ABSTRACT

The oculocerebrorenal syndrome of Lowe is a rare X-linked disease characterized by congenital cataracts, proximal renal tubulopathy, muscular hypotonia and mental impairment. This disease is caused by mutations in the OCRL gene encoding membrane bound inositol polyphosphate 5-phosphatase OCRL1. Here, we examined the OCRL gene of two Lowe syndrome patients and report two new missense mutations that affect the ASH domain involved in protein-protein interactions. Genomic DNA was extracted from peripheral blood of two non-related patients and their relatives. Exons and flanking intronic regions of OCRL were analyzed by direct sequencing. Several bioinformatics tools were used to assess the pathogenicity of the variants. The three-dimensional structure of wild-type and mutant ASH domains was modeled using the online server SWISS-MODEL. Clinical features suggesting the diagnosis of Lowe syndrome were observed in both patients. Genetic analysis revealed two novel missense variants, c.1907T>A (p.V636E) and c.1979A>C (p.H660P) in exon 18 of the OCRL gene confirming the clinical diagnosis in both cases. Variant c.1907T>A (p.V636E) was inherited from the patient's mother, while variant c.1979A>C (p.H660P) seems to have originated de novo. Analysis with bioinformatics tools indicated that both variants are pathogenic. Both amino acid changes affect the structure of the OCRL1 ASH domain. In conclusion, the identification of two novel missense mutations located in the OCRL1 ASH domain may shed more light on the functional importance of this domain. We suggest that p.V636E and p.H660P cause Lowe syndrome by disrupting the interaction of OCRL1 with other proteins or by impairing protein stability.

10.
Mol Genet Genomic Med ; 8(11): e1475, 2020 11.
Article in English | MEDLINE | ID: mdl-32869508

ABSTRACT

BACKGROUND: Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is an autosomal recessive tubulopathy characterized by excessive urinary wasting of magnesium and calcium, bilateral nephrocalcinosis, and progressive chronic renal failure in childhood or adolescence. FHHNC is caused by mutations in CLDN16 and CLDN19, which encode the tight-junction proteins claudin-16 and claudin-19, respectively. Most of these mutations are missense mutations and large deletions are rare. METHODS: We examined the clinical and biochemical features of a Spanish boy with early onset of FHHNC symptoms. Exons and flanking intronic segments of CLDN16 and CLDN19 were analyzed by direct sequencing. We developed a new assay based on Quantitative Multiplex PCR of Short Fluorescent Fragments (QMPSF) to investigate large CLDN16 deletions. RESULTS: Genetic analysis revealed two novel compound heterozygous mutations of CLDN16, comprising a missense mutation, c.277G>A; p.(Ala93Thr), in one allele, and a gross deletion that lacked exons 4 and 5,c.(840+25_?)del, in the other allele. The patient inherited these variants from his mother and father, respectively. CONCLUSIONS: Using direct sequencing and our QMPSF assay, we identified the genetic cause of FHHNC in our patient. This QMPSF assay should facilitate the genetic diagnosis of FHHNC. Our study provided additional data on the genotypic spectrum of the CLDN16 gene.


Subject(s)
Claudins/genetics , Gene Deletion , Magnesium Deficiency/genetics , Mutation, Missense , Nephrocalcinosis/genetics , Heterozygote , Humans , Infant , Magnesium Deficiency/pathology , Male , Nephrocalcinosis/pathology , Phenotype
13.
BMC Med Genet ; 20(1): 6, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30621608

ABSTRACT

BACKGROUND: Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis type 1 is an autosomal recessive disease characterized by excessive renal magnesium and calcium excretion, bilateral nephrocalcinosis, and progressive chronic renal failure. This rare disease is caused by mutations in CLDN16 that encodes claudin-16, a tight-junction protein involved in paracellular reabsorption of magnesium and calcium in the renal tubule. Most of these variants are located in exons and have been classified as missense mutations. The functional consequences of some of these claudin-16 mutant proteins have been analysed after heterologous expression showing indeed a significant loss of function compared to the wild-type claudin-16. We hypothesize that a number of CLDN16 exonic mutations can be responsible for the disease phenotype by disrupting the pre-mRNA splicing process. METHODS: We selected 12 previously described presumed CLDN16 missense mutations and analysed their potential effect on pre-mRNA splicing using a minigene assay. RESULTS: Our results indicate that five of these mutations induce significant splicing alterations. Mutations c.453G > T and c.446G > T seem to inactivate exonic splicing enhancers and promote the use of an internal cryptic acceptor splice site resulting in inclusion of a truncated exon 3 in the mature mRNA. Mutation c.571G > A affects an exonic splicing enhancer resulting in partial skipping of exon 3. Mutations c.593G > C and c.593G > A disturb the acceptor splice site of intron 3 and cause complete exon 4 skipping. CONCLUSIONS: To our knowledge, this is the first report of CLDN16 exonic mutations producing alterations in splicing. We suggest that in the absence of patients RNA samples, splicing functional assays with minigenes could be valuable for evaluating the effect of exonic CLDN16 mutations on pre-mRNA splicing.


Subject(s)
Claudins/genetics , Exons/genetics , Genetic Predisposition to Disease , Hypercalciuria/genetics , Mutation, Missense , Nephrocalcinosis/genetics , Renal Tubular Transport, Inborn Errors/genetics , Base Sequence , Calcium , Claudins/metabolism , Genetic Testing , Humans , Kidney Failure, Chronic/genetics , Magnesium , Mutagenesis, Site-Directed , Phenotype , RNA Splice Sites , RNA Splicing , RNA, Messenger/genetics
14.
Gene ; 689: 227-234, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30576809

ABSTRACT

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is an autosomal-recessive renal tubular disorder characterized by excessive urinary losses of magnesium and calcium, bilateral nephrocalcinosis and progressive chronic renal failure in childhood or adolescence. The disease is caused by mutations in the tight-junction proteins claudin-16 and claudin-19 that are encoded by the CLDN16 and CLDN19 genes, respectively. Patients with CLDN19 mutations also are affected with severe ocular abnormalities. The aim of our study was to identify and characterize the molecular defects causing this disease in a Georgian girl and two Spanish siblings. Clinical and biochemical parameters were studied. The CLDN16 and CLDN19 genes were analyzed by DNA sequencing. The functional consequences of the identified mutations on pre-mRNA splicing were investigated using a minigene assay. Sequence analysis revealed that the patient from Georgia was homozygous for a novel mutation, c.602G > A; p.(G201E), in exon 4 of the CLDN16 gene. The two Spanish siblings were homozygous for a new CLDN19 mutation, c.388G > T; p.(G130C), located in exon 2, and both parents were heterozygous carriers of the mutation. Bioinformatics analysis predicted that the amino acid substitutions generated by these mutations were pathogenic. Functional studies showed that mutation c.388G > T also results in partial skipping of CLDN19 exon 2, which would imply significant alterations in the claudin-19 protein structure. Conversely, CLDN16 mutation c.602G > A had no effect on pre-mRNA splicing. Our study expands the genotypic classification of this rare disease and provides the first report of a CLDN19 mutation affecting splicing.


Subject(s)
Claudins/genetics , Hypercalciuria/genetics , Mutation , Nephrocalcinosis/genetics , Renal Tubular Transport, Inborn Errors/genetics , Adolescent , Alternative Splicing/genetics , Child, Preschool , DNA Mutational Analysis , Female , Humans , Hypercalciuria/pathology , Infant , Male , Nephrocalcinosis/pathology , Pedigree , Polymorphism, Single Nucleotide , Protein Isoforms/genetics , Renal Tubular Transport, Inborn Errors/pathology , Siblings
15.
Genes (Basel) ; 9(1)2018 Jan 04.
Article in English | MEDLINE | ID: mdl-29300302

ABSTRACT

Mutations in the OCRL gene are associated with both Lowe syndrome and Dent-2 disease. Patients with Lowe syndrome present congenital cataracts, mental disabilities and a renal proximal tubulopathy, whereas patients with Dent-2 disease exhibit similar proximal tubule dysfunction but only mild, or no additional clinical defects. It is not yet understood why some OCRL mutations cause the phenotype of Lowe syndrome, while others develop the milder phenotype of Dent-2 disease. Our goal was to gain new insights into the consequences of OCRL exonic mutations on pre-mRNA splicing. Using predictive bioinformatics tools, we selected thirteen missense mutations and one synonymous mutation based on their potential effects on splicing regulatory elements or splice sites. These mutations were analyzed in a minigene splicing assay. Results of the RNA analysis showed that three presumed missense mutations caused alterations in pre-mRNA splicing. Mutation c.741G>T; p.(Trp247Cys) generated splicing silencer sequences and disrupted splicing enhancer motifs that resulted in skipping of exon 9, while mutations c.2581G>A; p.(Ala861Thr) and c.2581G>C; p.(Ala861Pro) abolished a 5' splice site leading to skipping of exon 23. Mutation c.741G>T represents the first OCRL exonic variant outside the conserved splice site dinucleotides that results in alteration of pre-mRNA splicing. Our results highlight the importance of evaluating the effects of OCRL exonic mutations at the mRNA level.

16.
Gene ; 578(1): 117-23, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26692149

ABSTRACT

Exonic mutations are usually classified as missense, synonymous or nonsense mutations, however, they can affect pre-mRNA splicing either by disrupting splice sites, by creating new ones or by changing splicing regulatory sequences. In this study, we examined 21 mutations of the PKD2 gene, encoding polycystin-2, previously reported as missense or synonymous for their possible effects on pre-mRNA splicing using bioinformatics tools. All these mutations except one have been identified in patients with autosomal dominant polycystic kidney disease, a common genetic disorder characterized by the development and progressive enlargement of cysts in the kidneys leading to end-stage renal disease. We selected 12 missense mutations and 1 synonymous variant for the minigene assay, and found that three, c.1532A>T (p.D511V), c.1716G>A (p.K572K) and c.2657A>G (p.D886G) caused alterations in pre-mRNA splicing. Mutation c.1532A>T resulted in skipping of exon 6 and incorporation of a defective exon lacking the 3' end, while c.1716G>A led to skipping of exon 7. Mutation c.2657A>G resulted in incorporation of an incomplete exon 14, which is in agreement with previous results obtained with the patient's lymphoblast RNA. Our findings should be taken into account with regard to the pathogenicity of these PKD2 exonic mutations. These results together with previous reports highlight the importance to evaluate the effects of exonic single nucleotide substitutions in autosomal dominant polycystic kidney disease.


Subject(s)
Alternative Splicing , Mutagenesis, Site-Directed , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics , Animals , COS Cells , Chlorocebus aethiops , Codon, Nonsense , Computational Biology/methods , Exons , HEK293 Cells , Humans , Silent Mutation
17.
RNA Biol ; 12(4): 369-74, 2015.
Article in English | MEDLINE | ID: mdl-25757501

ABSTRACT

The correct splicing of precursor-mRNA depends on the actual splice sites plus exonic and intronic regulatory elements recognized by the splicing machinery. Surprisingly, an increasing number of examples reveal that exonic mutations disrupt the binding of splicing factors to these sequences or generate new splice sites or regulatory elements, causing disease. This contradicts the general assumption that missense mutations disrupt protein function and that synonymous mutations are merely polymorphisms. Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disorder caused mainly by mutations in the PKD1 gene. Recently, we analyzed a substantial number of PKD1 missense or synonymous mutations to further characterize their consequences on pre-mRNA splicing. Our results showed that one missense and 2 synonymous mutations induce significant defects in pre-mRNA splicing. Thus, it appears that aberrant splicing as a result of exonic mutations is a previously unrecognized cause of ADPKD.


Subject(s)
Mutation , Polycystic Kidney, Autosomal Dominant/genetics , RNA Splicing , TRPP Cation Channels/genetics , Exons , Humans , Polymorphism, Genetic , RNA Precursors/metabolism , RNA Splice Sites , TRPP Cation Channels/metabolism
18.
Gene ; 546(2): 243-9, 2014 Aug 10.
Article in English | MEDLINE | ID: mdl-24907393

ABSTRACT

Autosomal dominant polycystic kidney disease is the most common human monogenic disorder and is caused by mutations in the PKD1 or PKD2 genes. Most patients with the disease present mutations in PKD1, and a considerable number of these alterations are single base substitutions within the coding sequence that are usually predicted to lead to missense or synonymous mutations. There is growing evidence that some of these mutations can be detrimental by affecting the pre-mRNA splicing process. The aim of our study was to test PKD1 mutations, described as missense or synonymous in the literature or databases, for their effects on exon inclusion. Bioinformatics tools were used to select mutations with a potential effect on pre-mRNA splicing. Mutations were experimentally tested using minigene assays. Exons and adjacent intronic sequences were PCR-amplified and cloned in the splicing reporter minigene, and selected mutations were introduced by site-directed mutagenesis. Minigenes were transfected into kidney derived cell lines. RNA from cultured cells was analyzed by RT-PCR and DNA sequencing. Analysis of thirty-three PKD1 exonic mutations revealed three mutations that induce splicing defects. The substitution c.11156G>A, previously predicted as missense mutation p.R3719Q, abolished the donor splice site of intron 38 and resulted in the incorporation of exon 38 with 117bp of intron 38 and skipping of exon 39. Two synonymous variants, c.327A>T (p.G109G) and c.11257C>A (p.R3753R), generated strong donor splice sites within exons 3 and 39 respectively, resulting in incorporation of incomplete exons. These three nucleotide substitutions represent the first PKD1 exonic mutations that induce aberrant mRNAs. Our results strengthen the importance to evaluate the consequences of presumed missense and synonymous mutations at the mRNA level.


Subject(s)
Mutation, Missense , Polycystic Kidney, Autosomal Dominant/genetics , RNA Precursors/genetics , RNA Splice Sites , RNA Splicing , TRPP Cation Channels/genetics , Animals , COS Cells , Chlorocebus aethiops , Databases, Nucleic Acid , Exons , Female , Humans , Introns , Male , Polycystic Kidney, Autosomal Dominant/metabolism , RNA Precursors/metabolism , TRPP Cation Channels/metabolism
19.
Clin Nephrol ; 81(5): 363-8, 2014 May.
Article in English | MEDLINE | ID: mdl-23110775

ABSTRACT

Bartter syndrome Type IV is a rare subtype of the Bartter syndromes that leads to both severe renal salt wasting and sensorineural deafness. This autosomal recessive disease is caused by mutations in the gene encoding barttin, BSND, an essential subunit of the ClC-K chloride channels expressed in renal and inner ear epithelia. Patients differ in the severity of renal symptoms, which appears to depend on the modification of channel function by the mutant barttin. To date, only a few BSND mutations have been reported, most of which are missense or nonsense mutations. In this study, we report the identification of the first insertion mutation, p.W102Vfs*7, in the BSND gene of a newborn girl with acute clinical symptoms including early-onset chronic renal failure. The results support previous data indicating that mutations that are predicted to abolish barttin expression are associated with a severe phenotype and early onset renal failure.


Subject(s)
Bartter Syndrome/genetics , Chloride Channels/genetics , Mutagenesis, Insertional , Bartter Syndrome/complications , Female , Humans , Infant, Newborn
20.
J Pediatr Genet ; 2(3): 133-40, 2013 Sep.
Article in English | MEDLINE | ID: mdl-27625851

ABSTRACT

Dent's disease is an X-linked proximal tubulopathy characterized by low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis and progressive renal failure. This disorder is frequently caused by mutations in the CLCN5 gene encoding the electrogenic chloride/proton exchanger ClC-5. Occasionally, Dent's disease has been associated to atypical cases of asymptomatic proteinuria with focal glomerulosclerosis. Twelve unrelated patients with Dent's disease, including two who presented with asymptomatic proteinuria and developed glomerulosclerosis, were studied. Mutational analysis of the CLCN5 gene was performed by DNA sequencing. We identified thirteen distinct CLCN5 mutations in the twelve patients. Seven of these mutations, p.P416fsX(*)17, p.[H107P, V108fs(*)27], p.G466D, p.G65R, p.G462S, p.Y164(*) and c.723+1G >T, were novel and possibly pathogenic. In one family, the patient's mother was not a carrier of the respective mutation. Our results increased the spectrum of CLCN5 disease causing defects with seven new pathogenic mutations and established a de novo origin in one of them. Remarkably, three new missense mutations, p.G466D, p.G65R and p.G462S, affect highly conserved glycine residues located in transmembrane α-helix GxxxG packing motifs. The two atypical cases further support that the diagnosis of Dent's disease should be considered in children with asymptomatic proteinuria and focal glomerulosclerosis and without evidence of primary glomerular disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...