Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(20): 14338-14349, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36178372

ABSTRACT

We conducted experiments to determine whether bioaugmentation with aerobic, polychlorinated biphenyl (PCB)-degrading microorganisms can mitigate polychlorinated biphenyl (PCB) emissions from contaminated sediment to air. Paraburkholderia xenovorans strain LB400 was added to bioreactors containing PCB-contaminated site sediment. PCB mass in both the headspace and aqueous bioreactor compartments was measured using passive samplers over 35 days. Time-series measurements of all 209 PCB congeners revealed a 57% decrease in total PCB mass accumulated in the vapor phase of bioaugmented treatments relative to non-bioaugmented controls, on average. A comparative congener-specific analysis revealed preferential biodegradation of lower-chlorinated PCBs (LC-PCBs) by LB400. Release of the most abundant congener (PCB 4 [2,2'-dichlorobiphenyl]) decreased by over 90%. Simulations with a PCB reactive transport model closely aligned with experimental observations. We also evaluated the effect of the phytogenic biosurfactant, saponin, on PCB bioavailability and biodegradation by LB400. Time-series qPCR measurements of biphenyl dioxygenase (bphA) genes showed that saponin better maintained bphA abundance, compared to the saponin-free treatment. These findings indicate that an active population of bioaugmented, aerobic PCB-degrading microorganisms can effectively lower PCB emissions and may therefore contribute to minimizing PCB inhalation exposure in communities surrounding PCB-contaminated sites.


Subject(s)
Dioxygenases , Polychlorinated Biphenyls , Biodegradation, Environmental , Hydroxylamines , Polychlorinated Biphenyls/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...