Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Front Oncol ; 14: 1307516, 2024.
Article in English | MEDLINE | ID: mdl-38884089

ABSTRACT

Introduction: Glioblastoma (grade IV) is the most aggressive primary brain tumor in adults, representing one of the biggest therapeutic challenges due to its highly aggressive nature. In this study, we investigated the impact of millimeter waves on tridimensional glioblastoma organoids derived directly from patient tumors. Our goal was to explore novel therapeutic possibilities in the fight against this challenging disease. Methods: The exposure setup was meticulously developed in-house, and we employed a comprehensive dosimetry approach, combining numerical and experimental methods. Biological endpoints included a global transcriptional profiling analysis to highlight possible deregulated pathways, analysis of cell morphological changes, and cell phenotypic characterization which are all important players in the control of glioblastoma progression. Results and discussion: Our results revealed a significant effect of continuous millimeter waves at 30.5 GHz on cell proliferation and apoptosis, although without affecting the differentiation status of glioblastoma cells composing the organoids. Excitingly, when applying a power level of 0.1 W (Root Mean Square), we discovered a remarkable (statistically significant) therapeutic effect when combined with the chemotherapeutic agent Temozolomide, leading to increased glioblastoma cell death. These findings present a promising interventional window for treating glioblastoma cells, harnessing the potential therapeutic benefits of 30.5 GHz CW exposure. Temperature increase during treatments was carefully monitored and simulated with a good agreement, demonstrating a negligible involvement of the temperature elevation for the observed effects. By exploring this innovative approach, we pave the way for improved future treatments of glioblastoma that has remained exceptionally challenging until now.

2.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396911

ABSTRACT

In the last few years, pulsed electric fields have emerged as promising clinical tools for tumor treatments. This study highlights the distinct impact of a specific pulsed electric field protocol, PEF-5 (0.3 MV/m, 40 µs, 5 pulses), on astrocytes (NHA) and medulloblastoma (D283) and glioblastoma (U87 NS) cancer stem-like cells (CSCs). We pursued this goal by performing ultrastructural analyses corroborated by molecular/omics approaches to understand the vulnerability or resistance mechanisms triggered by PEF-5 exposure in the different cell types. Electron microscopic analyses showed that, independently of exposed cells, the main targets of PEF-5 were the cell membrane and the cytoskeleton, causing membrane filopodium-like protrusion disappearance on the cell surface, here observed for the first time, accompanied by rapid cell swelling. PEF-5 induced different modifications in cell mitochondria. A complete mitochondrial dysfunction was demonstrated in D283, while a mild or negligible perturbation was observed in mitochondria of U87 NS cells and NHAs, respectively, not sufficient to impair their cell functions. Altogether, these results suggest the possibility of using PEF-based technology as a novel strategy to target selectively mitochondria of brain CSCs, preserving healthy cells.


Subject(s)
Mitochondria , Neoplasms , Mitochondria/metabolism , Cell Membrane/metabolism , Electricity , Cytoskeleton/metabolism , Brain/metabolism , Neoplasms/metabolism
3.
Acta Neuropathol Commun ; 11(1): 183, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978570

ABSTRACT

Chemotherapy resistance is considered one of the main causes of tumor relapse, still challenging researchers for the identification of the molecular mechanisms sustaining its emergence. Here, we setup and characterized chemotherapy-resistant models of Medulloblastoma (MB), one of the most lethal pediatric brain tumors, to uncover targetable vulnerabilities associated to their resistant phenotype. Integration of proteomic, transcriptomic and kinomic data revealed a significant deregulation of several pathways in resistant MB cells, converging to cell metabolism, RNA/protein homeostasis, and immune response, eventually impacting on patient outcome. Moreover, resistant MB cell response to a large library of compounds through a high-throughput screening (HTS), highlighted nucleoside metabolism as a relevant vulnerability of chemotolerant cells, with peculiar antimetabolites demonstrating increased efficacy against them and even synergism with conventional chemotherapeutics. Our results suggest that drug-resistant cells significantly rewire multiple cellular processes, allowing their adaptation to a chemotoxic environment, nevertheless exposing alternative actionable susceptibilities for their specific targeting.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Child , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Medulloblastoma/metabolism , Nucleosides/pharmacology , Nucleosides/therapeutic use , Proteomics , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Cell Line, Tumor
4.
Biochem Pharmacol ; 215: 115697, 2023 09.
Article in English | MEDLINE | ID: mdl-37481140

ABSTRACT

Medulloblastoma is a highly malignant pediatric brain tumor characterized by its aggressive nature and limited treatment options. Metabolic changes have recently emerged as key factors in the development, progression, and response to therapy in various types of cancer. Cancer cells exhibit remarkable adaptability by modulating glucose, lipids, amino acids, and nucleotide metabolism to survive in nutrient- and oxygen-deprived environments. Although medulloblastoma has been extensively studied from a genomic perspective, leading to the identification of four subgroups and their respective subcategories, the investigation of its metabolic phenotype has remained relatively understudied. This review focus on the available literature, aiming to summarize the current knowledge about the main metabolic pathways that are deregulated in medulloblastoma tumors, while emphasizing the controversial aspects and the progress that is yet to be made. Furthermore, we underscored the insights gained so far regarding the impact of metabolism on the development of drug resistance in medulloblastoma and the therapeutic strategies employed to target specific metabolic pathways.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Humans , Medulloblastoma/metabolism , Cerebellar Neoplasms/metabolism , Hunger , Metabolic Networks and Pathways
5.
Cell Mol Life Sci ; 80(8): 233, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37505240

ABSTRACT

Microenvironmental factors are known fundamental regulators of the phenotype and aggressiveness of glioblastoma (GBM), the most lethal brain tumor, characterized by fast progression and marked resistance to treatments. In this context, the extracellular matrix (ECM) is known to heavily influence the behavior of cancer cells from several origins, contributing to stem cell niches, influencing tumor invasiveness and response to chemotherapy, mediating survival signaling cascades, and modulating inflammatory cell recruitment. Here, we show that collagen VI (COL6), an ECM protein widely expressed in both normal and pathological tissues, has a distinctive distribution within the GBM mass, strongly correlated with the most aggressive and phenotypically immature cells. Our data demonstrate that COL6 sustains the stem-like properties of GBM cells and supports the maintenance of an aggressive transcriptional program promoting cancer cell proliferation and survival. In particular, we identified a specific subset of COL6-transcriptionally co-regulated genes, required for the response of cells to replicative stress and DNA damage, supporting the concept that COL6 is an essential stimulus for the activation of GBM cell response and resistance to chemotherapy, through the ATM/ATR axis. Altogether, these findings indicate that COL6 plays a pivotal role in GBM tumor biology, exerting a pleiotropic action across different GBM hallmarks, including phenotypic identity and gene transcription, as well as response to treatments, thus providing valuable information for the understanding of the complex microenvironmental cues underlying GBM malignancy.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Collagen/metabolism , Signal Transduction , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Neoplastic Stem Cells/metabolism
6.
Biology (Basel) ; 12(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37237541

ABSTRACT

The involvement of Wnt signaling in normal tissue homeostasis and disease has been widely demonstrated over the last 20 years. In particular, dysregulation of Wnt pathway components has been suggested as a relevant hallmark of several neoplastic malignancies, playing a role in cancer onset, progression, and response to treatments. In this review, we summarize the current knowledge on the instructions provided by Wnt signaling during organogenesis and, particularly, brain development. Moreover, we recapitulate the most relevant mechanisms through which aberrant Wnt pathway activation may impact on brain tumorigenesis and brain tumor aggressiveness, with a particular focus on the mutual interdependency existing between Wnt signaling components and the brain tumor microenvironment. Finally, the latest anti-cancer therapeutic approaches employing the specific targeting of Wnt signaling are extensively reviewed and discussed. In conclusion, here we provide evidence that Wnt signaling, due to its pleiotropic involvement in several brain tumor features, may represent a relevant target in this context, although additional efforts will be needed to: (i) demonstrate the real clinical impact of Wnt inhibition in these tumors; (ii) overcome some still unsolved concerns about the potential systemic effects of such approaches; (iii) achieve efficient brain penetration.

7.
Cells ; 12(7)2023 04 05.
Article in English | MEDLINE | ID: mdl-37048162

ABSTRACT

Recent proteomic, metabolomic, and transcriptomic studies have highlighted a connection between changes in mitochondria physiology and cellular pathophysiological mechanisms. Secondary assays to assess the function of these organelles appear fundamental to validate these -omics findings. Although mitochondrial membrane potential is widely recognized as an indicator of mitochondrial activity, high-content imaging-based approaches coupled to multiparametric to measure it have not been established yet. In this paper, we describe a methodology for the unbiased high-throughput quantification of mitochondrial membrane potential in vitro, which is suitable for 2D to 3D models. We successfully used our method to analyze mitochondrial membrane potential in monolayers of human fibroblasts, neural stem cells, spheroids, and isolated muscle fibers. Moreover, by combining automated image analysis and machine learning, we were able to discriminate melanoma cells from macrophages in co-culture and to analyze the subpopulations separately. Our data demonstrated that our method is a widely applicable strategy for large-scale profiling of mitochondrial activity.


Subject(s)
Microscopy , Proteomics , Humans , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Fibroblasts/metabolism
8.
Transl Res ; 251: 41-53, 2023 01.
Article in English | MEDLINE | ID: mdl-35788055

ABSTRACT

We previously demonstrated that Annexin A2 (ANXA2) is a pivotal mediator of the pro-oncogenic features displayed by glioblastoma (GBM) tumors, the deadliest adult brain malignancies, being involved in cell stemness, proliferation and invasion, thus negatively impacting patient prognosis. Based on these results, we hypothesized that compounds able to revert ANXA2-dependent transcriptional features could be exploited as reliable treatments to inhibit GBM cell aggressiveness by hampering their proliferative and migratory potential. Transcriptional signatures obtained by the modulation of ANXA2 activity/levels were functionally mapped through the QUADrATiC bioinformatic tool for compound identification. Selected compounds were screened by cell proliferation and migration assays in primary GBM cells, and we identified Homoharringtonine (HHT) as a potent inhibitor of GBM cell motility and proliferation, without affecting their viability. A further molecular characterization of the effects displayed by HHT, confirmed its ability to inhibit a transcriptional program involved in cell migration and invasion. Moreover, we demonstrated that the multiple antitumoral effects displayed by HHT are correlated to the inhibition of a platelet derived growth factor receptor α (PDGFRα)-dependent intracellular signaling through the impairment of Signal transducer and activator of transcription 3 (STAT3) and Ras homolog family member A (RhoA) axes. Our results demonstrate that HHT may act as a potent inhibitor of cancer cell proliferation and invasion in GBM, by hampering multiple PDGFRα-dependent oncogenic signals transduced through the STAT3 and RhoA intracellular components, finally suggesting its potential transferability for achieving an effective impairment of peculiar GBM hallmarks.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Homoharringtonine/pharmacology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Receptor, Platelet-Derived Growth Factor alpha/pharmacology , Gene Expression Regulation, Neoplastic , Cell Proliferation , Brain Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Cell Movement , Cell Line, Tumor
9.
Blood Adv ; 7(8): 1513-1524, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36053787

ABSTRACT

Juvenile myelomonocytic leukemia (JMML) is a rare clonal stem cell disorder that occurs in early childhood and is characterized by the hyperactivation of the RAS pathway in 95% of the patients. JMML is characterized by a hyperproliferation of granulocytes and monocytes, and little is known about the heterogeneous nature of leukemia-initiating cells, as well as of the cellular hierarchy of the JMML bone marrow. In this study, we report the generation and characterization of a novel patient-derived three-dimensional (3D) in vitro JMML model, called patient-derived JMML Atypical Organoid (pd-JAO), sustaining the long-term proliferation of JMML cells with stem cell features and patient-specific hallmarks. JMML cells brewed in a 3D model under different microenvironmental conditions acquired proliferative and survival advantages when placed under low oxygen tension. Transcriptomic and microscopic analyses revealed the activation of specific metabolic energy pathways and the inactivation of processes leading to cell death. Furthermore, we demonstrated the pd-JAO-derived cells' migratory, propagation, and self-renewal capacities. Our study contributes to the development of a robust JMML 3D in vitro model for studying and defining the impact of microenvironmental stimuli on JMML disease and the molecular mechanisms that regulate JMML initiating and propagating cells. Pd-JAO may become a promising model for compound tests focusing on new therapeutic interventions aimed at eradicating JMML progenitors and controlling JMML disease.


Subject(s)
Leukemia, Myelomonocytic, Juvenile , Humans , Child, Preschool , Leukemia, Myelomonocytic, Juvenile/therapy , Bone Marrow , Granulocytes , Cell Proliferation
10.
Cancers (Basel) ; 14(8)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35454804

ABSTRACT

Despite being subjected to high-dose chemo and radiotherapy, glioblastoma (GBM) patients still encounter almost inevitable relapse, due to the capability of tumor cells to disseminate and invade normal brain tissues. Moreover, the presence of a cancer stem cell (CSC) subpopulation, already demonstrated to better resist and evade treatments, further frustrates potential therapeutic approaches. In this context, we previously demonstrated that GBM is characterized by a tightly-regulated balance between the ß-catenin cofactors TCF1 and TCF4, with high levels of TCF4 responsible for sustaining CSC in these tumors; thus, supporting their aggressive features. Since histone deacetylase inhibitors (HDI) have been reported to strongly reduce TCF4 levels in colon cancer cells, we hypothesized that they could also exert a similar therapeutic action in GBM. Here, we treated primary GBM cultures with Trichostatin-A and Vorinostat, demonstrating their ability to strongly suppress the Wnt-dependent pathways; thus, promoting CSC differentiation and concomitantly impairing GBM cell viability and proliferation. More interestingly, analysis of their molecular effects suggested a prominent HDI action against GBM cell motility/migration, which we demonstrated to rely on the inhibition of the RhoA-GTPase and interferon intracellular cascades. Our results suggest HDI as potential therapeutic agents in GBM, through their action on multiple cancer hallmarks.

11.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35328420

ABSTRACT

Glioblastoma multiforme (GBM) is the most common brain cancer in adults. GBM starts from a small fraction of poorly differentiated and aggressive cancer stem cells (CSCs) responsible for aberrant proliferation and invasion. Due to extreme tumor heterogeneity, actual therapies provide poor positive outcomes, and cancers usually recur. Therefore, alternative approaches, possibly targeting CSCs, are necessary against GBM. Among emerging therapies, high intensity ultra-short pulsed electric fields (PEFs) are considered extremely promising and our previous results demonstrated the ability of a specific electric pulse protocol to selectively affect medulloblastoma CSCs preserving normal cells. Here, we tested the same exposure protocol to investigate the response of U87 GBM cells and U87-derived neurospheres. By analyzing different in vitro biological endpoints and taking advantage of transcriptomic and bioinformatics analyses, we found that, independent of CSC content, PEF exposure affected cell proliferation and differentially regulated hypoxia, inflammation and P53/cell cycle checkpoints. PEF exposure also significantly reduced the ability to form new neurospheres and inhibited the invasion potential. Importantly, exclusively in U87 neurospheres, PEF exposure changed the expression of stem-ness/differentiation genes. Our results confirm this physical stimulus as a promising treatment to destabilize GBM, opening up the possibility of developing effective PEF-mediated therapies.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Glioblastoma , Adult , Brain Neoplasms/pathology , Cell Line, Tumor , Cerebellar Neoplasms/pathology , Glioblastoma/metabolism , Humans , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/metabolism
12.
Cancers (Basel) ; 12(1)2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31963405

ABSTRACT

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Despite the progress of new treatments, the risk of recurrence, morbidity, and death remains significant and the long-term adverse effects in survivors are substantial. The fraction of cancer stem-like cells (CSCs) because of their self-renewal ability and multi-lineage differentiation potential is critical for tumor initiation, growth, and resistance to therapies. For the development of new CSC-targeted therapies, further in-depth studies are needed using enriched and stable MB-CSCs populations. This work, aimed at identifying the amount of CSCs in three available human cell lines (DAOY, D341, and D283), describes different approaches based on the expression of stemness markers. First, we explored potential differences in gene and protein expression patterns of specific stem cell markers. Then, in order to identify and discriminate undifferentiated from differentiated cells, MB cells were characterized using a physical characterization method based on a high-frequency dielectrophoresis approach. Finally, we compared their tumorigenic potential in vivo, through engrafting in nude mice. Concordantly, our findings identified the D283 human cell line as an ideal model of CSCs, providing important evidence on the use of a commercial human MB cell line for the development of new strategic CSC-targeting therapies.

13.
Front Oncol ; 10: 600980, 2020.
Article in English | MEDLINE | ID: mdl-33585217

ABSTRACT

BACKGROUND: The interplay between neoplastic cells and surrounding extracellular matrix (ECM) is one of the determinant elements for cancer growth. The remodeling of the ECM by cancer-associated fibroblasts (CAFs) shapes tumor microenvironment by depositing and digesting ECM proteins, hence promoting tumor growth and invasion. While for epithelial tumors CAFs are well characterized, little is known about the stroma composition of mesenchymal cancers, such as in rhabdomyosarcoma (RMS), the most common soft tissue sarcoma during childhood and adolescence. The aim of this work is to identify the importance of CAFs in specifying RMS microenvironment and the role of these stromal cells in RMS growth. METHODS: We assessed in two dimensional (2D) and three dimensional (3D) systems the attraction between RMS cells and fibroblasts using epithelial colon cancer cell line as control. CAFs were studied in a xenogeneic mouse model of both tumor types and characterized in terms of fibroblast activation protein (FAP), mouse PDGFR expression, metalloproteases activation, and ECM gene and protein expression profiling. RESULTS: In 2D model, the rate of interaction between stromal and malignant cells was significantly lower in RMS with respect to colon cancer. Particularly, in 3D system, RMS spheroids tended to dismantle the compact aggregate when grown on the layer of stromal cells. In vivo, despite the well-formed tumor mass, murine CAFs were found in low percentage in RMS xenogeneic samples. CONCLUSIONS: Our findings support the evidence that, differently from epithelial cancers, RMS cells are directly involved in their own ECM remodeling, and less dependent on CAFs support for cancer cell growth.

14.
Theranostics ; 9(17): 4860-4877, 2019.
Article in English | MEDLINE | ID: mdl-31410187

ABSTRACT

HIF-1α has been suggested to interplay with Wnt signaling components in order to activate a neuronal differentiation process in both normal brain and glioblastoma (GBM). Based on these data, we explored the molecular mechanisms underlying the observed capability of GBM cells to acquire a neuronal phenotype upon Wnt signaling stimulation and how the microenvironment, particularly hypoxia, modulates this process. Methods: here, the employment of ChIP-seq techniques together with co-immunoprecipitation approaches allowed to reconstruct the molecular interactions responsible for activating specific pro-differentiating transcriptional programs in GBM cells. Moreover, gene silencing/over-expression approaches coupled with the functional analysis of cell phenotype were applied to confirm ChIP-driven hypotheses. Finally, we combined the use of publicly available gene expression datasets with protein expression data by immunohistochemistry to test the clinical relevance of obtained results. Results: our data clearly suggest that HIF-1α is recruited by the ß-catenin/TCF1 complex to foster neuronal differentiation gene transcription in hypoxic GBM cells. Conversely, at higher oxygen levels, the increased expression of TCF4 exerts a transcriptional inhibitory function on the same genomic regions, thus counteracting differentiation. Moreover, we demonstrate the existence of a positive correlation between the expression levels of HIF-1α, TCF1 and neuronal phenotype in GBM tumors, accompanied by the over-expression of several Wnt signaling components, finally affecting patient prognosis. Conclusion: we unveiled a peculiar mechanism by which TCF1 and HIF-1α can induce a reminiscent neuronal differentiation of hypoxic GBM cells, which is hampered, in normoxia, by high levels of TCF4, thus not only de facto controlling the balance between differentiation and stemness, but also impacting on intra-tumoral heterogeneity and eventually patient outcome.


Subject(s)
Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplastic Stem Cells/metabolism , Neurogenesis , Wnt Signaling Pathway , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Hypoxia , Glioblastoma/metabolism , Glioblastoma/pathology , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Neoplastic Stem Cells/cytology , Neurons/cytology , Neurons/metabolism , Oxygen/metabolism , Tumor Cells, Cultured
15.
Cell Death Differ ; 25(10): 1808-1822, 2018 11.
Article in English | MEDLINE | ID: mdl-29977042

ABSTRACT

Glioblastoma multiforme (GBM) is a highly vascularized and aggressive brain tumor, with a strong ability to disseminate and invade the surrounding parenchyma. In addition, a subpopulation of GBM stem cells has been reported to possess the ability to transdifferentiate into tumor-derived endothelial cells (TDECs), supporting the resistance to anti-angiogenic treatments of newly formed blood vessels. Bone Morphogenetic Protein 9 (BMP9) is critically involved in the processes of cancer cell differentiation, invasion and metastasis, representing a potential tool in order to impair the intrinsic GBM aggressiveness. Here we demonstrate that BMP9 is able to trigger the activation of SMADs in patient-derived GBM cells, and to strongly inhibit proliferation and invasion by reducing the activation of PI3K/AKT/MAPK and RhoA/Cofilin pathways, respectively. Intriguingly, BMP9 treatment is sufficient to induce a strong differentiation of GBM stem-like cells and to significantly counteract the already reported process of GBM cell transdifferentiation into TDECs not only in in vitro mimicked TDEC models, but also in vivo in orthotopic xenografts in mice. Additionally, we describe a strong BMP9-mediated inhibition of the whole angiogenic process engaged during GBM tumor formation. Based on these results, we believe that BMP9, by acting at multiple levels against GBM cell aggressiveness, can be considered a promising candidate, to be further developed, for the future therapeutic management of GBM.


Subject(s)
Cell Transformation, Neoplastic/drug effects , Growth Differentiation Factor 2/pharmacology , Neovascularization, Pathologic , Animals , Brain/metabolism , Brain/pathology , Brain Neoplasms/blood supply , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Transdifferentiation/drug effects , Glioblastoma/blood supply , Glioblastoma/drug therapy , Glioblastoma/pathology , Growth Differentiation Factor 2/therapeutic use , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Smad Proteins/metabolism , Transplantation, Heterologous , Tumor Cells, Cultured , rhoA GTP-Binding Protein/metabolism
16.
Br J Cancer ; 118(7): 985-994, 2018 04.
Article in English | MEDLINE | ID: mdl-29515258

ABSTRACT

BACKGROUND: Despite chemotherapy intensification, a subgroup of high-risk paediatric T-cell acute lymphoblastic leukemia (T-ALL) patients still experience treatment failure. In this context, we hypothesised that therapy resistance in T-ALL might involve aldo-keto reductase 1C (AKR1C) enzymes as previously reported for solid tumors. METHODS: Expression of NRF2-AKR1C signaling components has been analysed in paediatric T-ALL samples endowed with different treatment outcomes as well as in patient-derived xenografts of T-ALL. The effects of AKR1C enzyme modulation has been investigated in T-ALL cell lines and primary cultures by combining AKR1C inhibition, overexpression, and gene silencing approaches. RESULTS: We show that T-ALL cells overexpress AKR1C1-3 enzymes in therapy-resistant patients. We report that AKR1C1-3 enzymes play a role in the response to vincristine (VCR) treatment, also ex vivo in patient-derived xenografts. Moreover, we demonstrate that the modulation of AKR1C1-3 levels is sufficient to sensitise T-ALL cells to VCR. Finally, we show that T-ALL chemotherapeutics induce overactivation of AKR1C enzymes independent of therapy resistance, thus establishing a potential resistance loop during T-ALL combination treatment. CONCLUSIONS: Here, we demonstrate that expression and activity of AKR1C enzymes correlate with response to chemotherapeutics in T-ALL, posing AKR1C1-3 as potential targets for combination treatments during T-ALL therapy.


Subject(s)
Aldo-Keto Reductases/physiology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Resistance, Neoplasm/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , 20-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 20-Hydroxysteroid Dehydrogenases/physiology , Age of Onset , Aldo-Keto Reductase Family 1 Member C3/antagonists & inhibitors , Aldo-Keto Reductase Family 1 Member C3/physiology , Aldo-Keto Reductases/antagonists & inhibitors , Animals , Child , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Leukemic/drug effects , Humans , Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Hydroxysteroid Dehydrogenases/physiology , Isoenzymes/physiology , Medroxyprogesterone Acetate/administration & dosage , Mice , Mice, Inbred NOD , Mice, SCID , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/physiology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Cells, Cultured , Vincristine/administration & dosage , Xenograft Model Antitumor Assays
17.
Biochim Biophys Acta Gen Subj ; 1861(9): 2282-2292, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28687190

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most aggressive type of primary brain tumor, characterized by the intrinsic resistance to chemotherapy due to the presence of a highly aggressive Cancer Stem Cell (CSC) sub-population. In this context, Bone Morphogenetic Proteins (BMPs) have been demonstrated to induce CSC differentiation and to sensitize GBM cells to treatments. METHODS: The BMP-2 mimicking peptide, named GBMP1a, was synthesized on solid-phase by Fmoc chemistry. Structural characterization and prediction of receptor binding were obtained by Circular Dicroism (CD) and NRM analyses. Activation of BMP signalling was evaluated by a luciferase reporter assay and western blot. Pro-differentiating effects of GBMP1a were verified by immunostaining and neurosphere assay in primary glioblastoma cultures. RESULTS: CD and NMR showed that GBMP1a correctly folds into expected tridimensional structures and predicted its binding to BMPR-IA to the same epitope as in the native complex. Reporter analysis disclosed that GBMP1a is able to activate BMP signalling in GBM cells. Moreover, BMP-signalling activation was specifically dependent on smad1/5/8 phosphorylation. Finally, we confirmed that GBMP1a treatment is sufficient to enhance osteogenic differentiation of Mesenchymal Stem Cells and to induce astroglial differentiation of glioma stem cells (GSCs) in vitro. CONCLUSIONS: GBMP1a was demonstrated to be a good inducer of GSC differentiation, thus being considered a potential anti-cancer tool to be further developed for GBM treatment. GENERAL SIGNIFICANCE: These data highlight the role of BMP-mimicking peptides as potential anti-cancer agents against GBM and stimulate the further development of GBMP1a-based structures in order to enhance its stability and activity.


Subject(s)
Antineoplastic Agents/pharmacology , Bone Morphogenetic Protein 2/pharmacology , Glioblastoma/pathology , Neoplastic Stem Cells/drug effects , Peptide Fragments/pharmacology , Astrocytes/cytology , Astrocytes/drug effects , Bone Morphogenetic Protein 2/chemistry , Cell Differentiation/drug effects , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Molecular Mimicry , Neoplastic Stem Cells/cytology , Osteogenesis/drug effects , Peptide Fragments/chemistry , Temozolomide
19.
Oncotarget ; 7(34): 54632-54649, 2016 Aug 23.
Article in English | MEDLINE | ID: mdl-27429043

ABSTRACT

Glioblastoma (GBM) is the most devastating tumor of the brain, characterized by an almost inevitable tendency to recur after intensive treatments and a fatal prognosis. Indeed, despite recent technical improvements in GBM surgery, the complete eradication of cancer cell disseminated outside the tumor mass still remains a crucial issue for glioma patients management. In this context, Annexin 2A (ANXA2) is a phospholipid-binding protein expressed in a variety of cell types, whose expression has been recently associated with cell dissemination and metastasis in many cancer types, thus making ANXA2 an attractive putative regulator of cell invasion also in GBM.Here we show that ANXA2 is over-expressed in GBM and positively correlates with tumor aggressiveness and patient survival. In particular, we associate the expression of ANXA2 to a mesenchymal and metastatic phenotype of GBM tumors. Moreover, we functionally characterized the effects exerted by ANXA2 inhibition in primary GBM cultures, demonstrating its ability to sustain cell migration, matrix invasion, cytoskeletal remodeling and proliferation. Finally, we were able to generate an ANXA2-dependent gene signature with a significant prognostic potential in different cohorts of solid tumor patients, including GBM.In conclusion, we demonstrate that ANXA2 acts at multiple levels in determining the disseminating and aggressive behaviour of GBM cells, thus proving its potential as a possible target and strong prognostic factor in the future management of GBM patients.


Subject(s)
Annexin A2/genetics , Brain Neoplasms/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Glioblastoma/genetics , Adult , Aged , Animals , Annexin A2/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Chick Embryo , Chorioallantoic Membrane/metabolism , Chorioallantoic Membrane/pathology , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Invasiveness
20.
Biomed Res Int ; 2015: 973912, 2015.
Article in English | MEDLINE | ID: mdl-26557719

ABSTRACT

Medulloblastoma is the most common malignant brain tumor of childhood. Although survival has slowly increased in the past years, the prognosis of these patients remains unfavourable. In this context, it has been recently shown that the intracellular signaling pathways activated during embryonic cerebellar development are deregulated in MDB. One of the most important is PI3K/AKT/mTOR, implicated in cell proliferation, survival, growth, and protein synthesis. Moreover, a fraction of MDB cells has been shown to posses stemlike features, to express typical neuronal precursor markers (Nestin and CD133), and to be maintained by the hypoxic cerebellar microenvironment. This subpopulation of MDB cells is considered to be responsible for treatment resistance and recurrence. In this study, we evaluated the effects of PI3K/AKT pathway inhibition on primary cultures of MDB and particularly on the cancer stem cell (CSC) population (CD133(+)). PI3K inhibition was able to counteract MDB cell growth and to promote differentiation of stemlike MDB cells. Moreover, PI3K/AKT pathway suppression induced dramatic cell death through activation of the mitochondrial proapoptotic cascade. Finally, analysis on the stem cells fraction revealed that the MDB CSC population is more sensitive to PI3K targeting compared to the whole cancerous population and its nonstem cell counterpart.


Subject(s)
Cerebellar Neoplasms/metabolism , Medulloblastoma/metabolism , Neoplastic Stem Cells/physiology , Phosphoinositide-3 Kinase Inhibitors , Signal Transduction/physiology , Apoptosis , Brain/cytology , Cell Line, Tumor , Cell Proliferation , Chromones/chemistry , Chromones/pharmacology , Drug Resistance, Neoplasm , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Morpholines/chemistry , Morpholines/pharmacology , Neoplastic Stem Cells/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...