Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Front Psychiatry ; 15: 1364271, 2024.
Article in English | MEDLINE | ID: mdl-38903634

ABSTRACT

Introduction: Suicide is a current leading cause of death in adolescents and young adults. The neurobiological underpinnings of suicide risk in youth, however, remain unclear and a brain-based model is lacking. In adult samples, current models highlight deficient serotonin release as a potential suicide biomarker, and in particular, involvement of serotonergic dysfunction in relation to the putamen and suicidal behavior. Less is known about associations among striatal regions and relative suicidal risk across development. The current study examined putamen connectivity in depressed adolescents with (AT) and without history of a suicide attempt (NAT), specifically using resting-state functional magnetic resonance imaging (fMRI) to evaluate patterns in resting-state functional connectivity (RSFC). We hypothesized the AT group would exhibit lower striatal RSFC compared to the NAT group, and lower striatal RSFC would associate with greater suicidal ideation severity and/or lethality of attempt. Methods: We examined whole-brain RSFC of six putamen regions in 17 adolescents with depression and NAT (MAge [SD] = 16.4[0.3], 41% male) and 13 with AT (MAge [SD] = 16.2[0.3], 31% male). Results: Only the dorsal rostral striatum showed a statistically significant bilateral between-group difference in RSFC with the superior frontal gyrus and supplementary motor area, with higher RSFC in the group without a suicide attempt compared to those with attempt history (voxel-wise p<.001, cluster-wise p<.01). No significant associations were found between any putamen RSFC patterns and suicidal ideation severity or lethality of attempts among those who had attempted. Discussion: The results align with recent adult literature and have interesting theoretical and clinical implications. A possible interpretation of the results is a mismatch of the serotonin transport to putamen and to the supplementary motor area and the resulting reduced functional connectivity between the two areas in adolescents with attempt history. The obtained results can be used to enhance the diathesis-stress model and the Emotional paiN and social Disconnect (END) model of adolescent suicidality by adding the putamen. We also speculate that connectivity between putamen and the supplementary motor area may in the future be used as a valuable biomarker of treatment efficacy and possibly prediction of treatment outcome.

2.
Psychoneuroendocrinology ; 165: 107045, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636352

ABSTRACT

BACKGROUND: Brain-derived neurotrophic factor (BDNF) has been implicated in the therapeutic action of antidepressants and possibly in the pathophysiology of Major Depressive Disorder (MDD). Clinical studies of peripheral blood levels of BDNF in MDD have provided conflicting results, and there are also conflicting reports regarding the predictive value of peripheral BDNF levels for antidepressant treatment response. The present study investigated the association between serum BDNF levels, the BDNF Val66Met polymorphism (rs6265), clinical characteristics and SSRI treatment response. METHODS: This open-label clinical trial included 99 physically healthy, unmedicated MDD participants and 70 healthy controls. Following a baseline assessment, 53 of the MDD participants completed an eight-week, open-label course of SSRI antidepressant treatment. Serum BDNF levels and Hamilton Rating Scale for Depression (HDRS) ratings were examined at baseline and after eight weeks of treatment. Antidepressant response was defined as a decrease in HDRS ratings of > 50% from baseline to the end-of-treatment. Finally, serum BDNF levels and SSRI treatment response were compared between MDD participants who were heterozygous or homozygous for the Met allele ("Met-carriers") and individuals homozygous for the Val allele. RESULTS: Serum BDNF levels at baseline were significantly higher in the unmedicated MDD participants compared to healthy controls (15.90 ng/ml vs 13.75 ng/ml, t (167) = -2.041, p = 0.043). In a post-hoc analysis, this difference was seen in the female but not male participants (16.85 ng/ml vs 14.06 ng/ml, t (91) = -2.067, p = 0.042; 14.86 ng/ml vs 13.31 ng/ml, t (74) = -0.923, p = 0.359). Baseline serum BDNF levels were not associated with treatment responder status or with absolute change in depression ratings over the course of 8-week SSRI treatment (p = 0.599). In both Responders and Non-responders, no significant changes in serum BDNF levels were found over the 8-week period of SSRI-treatment (16.32 ng/ml vs 16.23 ng/ml, t (18) = 0.060, p = 0.953; 16.04 ng/ml vs 15.61 ng/ml, t (29) = 0.438, p = 0.665, respectively). Further, no differences were found in serum BDNF levels prior to treatment between MDD Met-carriers and MDD Val/Val homozygotes (15.32 ng/ml vs 16.36 ng/ml, t (85) = 0.747, p = 0.457), and no differences were found in post-treatment serum BDNF (F1,42= 0.031, p = 0.862). However, MDD Val/Val homozygotes showed significantly greater antidepressant responses at week 8 than did MDD Met-carriers (F1,46 = 4.366, p = 0.043). CONCLUSION: Our results do not support sufficient reliability of using peripheral BDNF to characterize depression or to predict antidepressant response in clinical use. The role of sex in moderating BDNF differences in depression, and the role of BDNF gene polymorphisms in predicting antidepressant response, remain to be further investigated. We conclude that, while central nervous system BDNF is likely involved in antidepressant efficacy and in aspects of MDD pathophysiology, its reflection in serum BDNF levels is of limited diagnostic or prognostic utility.


Subject(s)
Brain-Derived Neurotrophic Factor , Depressive Disorder, Major , Polymorphism, Single Nucleotide , Selective Serotonin Reuptake Inhibitors , Humans , Brain-Derived Neurotrophic Factor/blood , Brain-Derived Neurotrophic Factor/genetics , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Depressive Disorder, Major/blood , Male , Female , Adult , Selective Serotonin Reuptake Inhibitors/therapeutic use , Polymorphism, Single Nucleotide/genetics , Middle Aged , Treatment Outcome , Antidepressive Agents/therapeutic use , Alleles , Genotype
3.
Transl Psychiatry ; 14(1): 22, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200001

ABSTRACT

Circulating cell-free mitochondrial DNA (ccf-mtDNA) is a biomarker of cellular injury or cellular stress and is a potential novel biomarker of psychological stress and of various brain, somatic, and psychiatric disorders. No studies have yet analyzed ccf-mtDNA levels in post-traumatic stress disorder (PTSD), despite evidence of mitochondrial dysfunction in this condition. In the current study, we compared plasma ccf-mtDNA levels in combat trauma-exposed male veterans with PTSD (n = 111) with those who did not develop PTSD (n = 121) and also investigated the relationship between ccf mt-DNA levels and glucocorticoid sensitivity. In unadjusted analyses, ccf-mtDNA levels did not differ significantly between the PTSD and non-PTSD groups (t = 1.312, p = 0.191, Cohen's d = 0.172). In a sensitivity analysis excluding participants with diabetes and those using antidepressant medication and controlling for age, the PTSD group had lower ccf-mtDNA levels than did the non-PTSD group (F(1, 179) = 5.971, p = 0.016, partial η2 = 0.033). Across the entire sample, ccf-mtDNA levels were negatively correlated with post-dexamethasone adrenocorticotropic hormone (ACTH) decline (r = -0.171, p = 0.020) and cortisol decline (r = -0.149, p = 0.034) (viz., greater ACTH and cortisol suppression was associated with lower ccf-mtDNA levels) both with and without controlling for age, antidepressant status and diabetes status. Ccf-mtDNA levels were also significantly positively associated with IC50-DEX (the concentration of dexamethasone at which 50% of lysozyme activity is inhibited), a measure of lymphocyte glucocorticoid sensitivity, after controlling for age, antidepressant status, and diabetes status (ß = 0.142, p = 0.038), suggesting that increased lymphocyte glucocorticoid sensitivity is associated with lower ccf-mtDNA levels. Although no overall group differences were found in unadjusted analyses, excluding subjects with diabetes and those taking antidepressants, which may affect ccf-mtDNA levels, as well as controlling for age, revealed decreased ccf-mtDNA levels in PTSD. In both adjusted and unadjusted analyses, low ccf-mtDNA levels were associated with relatively increased glucocorticoid sensitivity, often reported in PTSD, suggesting a link between mitochondrial and glucocorticoid-related abnormalities in PTSD.


Subject(s)
Cell-Free Nucleic Acids , Diabetes Mellitus , Stress Disorders, Post-Traumatic , Veterans , Humans , Male , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/genetics , Glucocorticoids , Hydrocortisone , DNA, Mitochondrial/genetics , Adrenocorticotropic Hormone , Antidepressive Agents , Biomarkers , Dexamethasone/pharmacology
4.
Sci Rep ; 13(1): 10238, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353495

ABSTRACT

Telomere length (TL) is a marker of biological aging, and shorter telomeres have been associated with several medical and psychiatric disorders, including cardiometabolic dysregulation and Major Depressive Disorder (MDD). In addition, studies have shown shorter TL to be associated with poorer response to certain psychotropic medications, and our previous work suggested shorter TL and higher telomerase activity (TA) predicts poorer response to Selective Serotonin Reuptake Inhibitor (SSRI) treatment. Using a new group of unmedicated medically healthy individuals with MDD (n = 48), we sought to replicate our prior findings demonstrating that peripheral blood mononuclear cell (PBMC) TL and TA predict response to SSRI treatment and to identify associations between TL and TA with biological stress mediators and cardiometabolic risk indices. Our results demonstrate that longer pre-treatment TL was associated with better response to SSRI treatment (ß = .407 p = .007). Additionally, we observed that TL had a negative relationship with allostatic load (ß = - .320 p = .017) and a cardiometabolic risk score (ß = - .300 p = .025). Our results suggest that PBMC TL reflects, in part, the cumulative effects of physiological stress and cardiovascular risk in MDD and may be a biomarker for predicting SSRI response.


Subject(s)
Cardiovascular Diseases , Depressive Disorder, Major , Telomerase , Humans , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Leukocytes, Mononuclear/metabolism , Depression , Telomerase/genetics , Telomere Shortening , Selective Serotonin Reuptake Inhibitors/therapeutic use , Antidepressive Agents/therapeutic use , Telomere/metabolism , Cardiovascular Diseases/drug therapy
5.
Cell Rep Med ; 4(5): 101045, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37196634

ABSTRACT

Post-traumatic stress disorder (PTSD) is a multisystem syndrome. Integration of systems-level multi-modal datasets can provide a molecular understanding of PTSD. Proteomic, metabolomic, and epigenomic assays are conducted on blood samples of two cohorts of well-characterized PTSD cases and controls: 340 veterans and 180 active-duty soldiers. All participants had been deployed to Iraq and/or Afghanistan and exposed to military-service-related criterion A trauma. Molecular signatures are identified from a discovery cohort of 218 veterans (109/109 PTSD+/-). Identified molecular signatures are tested in 122 separate veterans (62/60 PTSD+/-) and in 180 active-duty soldiers (PTSD+/-). Molecular profiles are computationally integrated with upstream regulators (genetic/methylation/microRNAs) and functional units (mRNAs/proteins/metabolites). Reproducible molecular features of PTSD are identified, including activated inflammation, oxidative stress, metabolic dysregulation, and impaired angiogenesis. These processes may play a role in psychiatric and physical comorbidities, including impaired repair/wound healing mechanisms and cardiovascular, metabolic, and psychiatric diseases.


Subject(s)
Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Humans , Military Personnel/psychology , Veterans/psychology , Stress Disorders, Post-Traumatic/diagnosis , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/psychology , Proteomics , Inflammation
6.
Transl Psychiatry ; 12(1): 431, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36195591

ABSTRACT

Adverse childhood experiences have been consistently linked with physical and mental health disorders in adulthood that may be mediated, in part, via the effects of such exposures on biological aging. Using recently developed "epigenetic clocks", which provide an estimate of biological age, several studies have demonstrated a link between the cumulative exposure to childhood adversities and accelerated epigenetic aging. However, not all childhood adversities are equivalent and less is known about how distinct dimensions of childhood adversity relate to epigenetic aging metrics. Using two measures of childhood adversity exposure, we assess how the dimensions of Maltreatment and Household Dysfunction relate to epigenetic aging using two "second-generation" clocks, GrimAge and PhenoAge, in a cohort of unmedicated somatically healthy adults with moderate to severe major depression (n = 82). Our results demonstrate that the dimension of Maltreatment is associated with epigenetic age acceleration (EAA) using the PhenoAge but not the GrimAge clock. This association was observed using both the Childhood Trauma questionnaire (CTQ; ß = 0.272, p = 0.013) and the Adverse Childhood Experiences (ACEs) questionnaire (ß = 0.307, p = 0.005) and remained significant when adjusting for exposure to the dimension of Household Dysfunction (ß = 0.322, p = 0.009). In contrast, the dimension of Household Dysfunction is associated with epigenetic age deceleration (ß = -0.194, p = 0.083) which achieved significance after adjusting for exposure to the dimension of Maltreatment (ß = -0.304, p = 0.022). This study is the first to investigate these effects among individuals with Major Depressive Disorder and suggests that these dimensions of adversity may be associated with disease via distinct biological mechanisms.


Subject(s)
Adverse Childhood Experiences , Depressive Disorder, Major , Adult , Aging/genetics , Depression , Depressive Disorder, Major/genetics , Humans , Surveys and Questionnaires
7.
Transl Psychiatry ; 11(1): 193, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33820909

ABSTRACT

Major depressive disorder (MDD) is associated with premature mortality and is an independent risk factor for a broad range of diseases, especially those associated with aging, such as cardiovascular disease, diabetes, and Alzheimer's disease. However, the pathophysiology underlying increased rates of somatic disease in MDD remains unknown. It has been proposed that MDD represents a state of accelerated cellular aging, and several measures of cellular aging have been developed in recent years. Among such metrics, estimators of biological age based on predictable age-related patterns of DNA methylation (DNAm), so-called 'epigenetic clocks', have shown particular promise for their ability to capture accelerated aging in psychiatric disease. The recently developed DNAm metric known as 'GrimAge' is unique in that it was trained on time-to-death data and has outperformed its predecessors in predicting both morbidity and mortality. Yet, GrimAge has not been investigated in MDD. Here we measured GrimAge in 49 somatically healthy unmedicated individuals with MDD and 60 age-matched healthy controls. We found that individuals with MDD exhibited significantly greater GrimAge relative to their chronological age ('AgeAccelGrim') compared to healthy controls (p = 0.001), with a median of 2 years of excess cellular aging. This difference remained significant after controlling for sex, current smoking status, and body-mass index (p = 0.015). These findings are consistent with prior suggestions of accelerated cellular aging in MDD, but are the first to demonstrate this with an epigenetic metric predictive of premature mortality.


Subject(s)
Depressive Disorder, Major , Aging , Child, Preschool , DNA Methylation , Depressive Disorder, Major/genetics , Epigenesis, Genetic , Epigenomics , Humans
8.
Mil Med ; 185(Suppl 1): 311-318, 2020 01 07.
Article in English | MEDLINE | ID: mdl-32074311

ABSTRACT

INTRODUCTION: Current pharmacological treatments of post-traumatic stress disorder (PTSD) have limited efficacy. Although the diagnosis is based on psychopathological criteria, it is frequently accompanied by somatic comorbidities and perhaps "accelerated biological aging," suggesting widespread physical concomitants. Such physiological comorbidities may affect core PTSD symptoms but are rarely the focus of therapeutic trials. METHODS: To elucidate the potential involvement of metabolism, inflammation, and mitochondrial function in PTSD, we integrate findings and mechanistic models from the DOD-sponsored "Systems Biology of PTSD Study" with previous data on these topics. RESULTS: Data implicate inter-linked dysregulations in metabolism, inflammation, mitochondrial function, and perhaps the gut microbiome in PTSD. Several inadequately tested targets of pharmacological intervention are proposed, including insulin sensitizers, lipid regulators, anti-inflammatories, and mitochondrial biogenesis modulators. CONCLUSIONS: Systemic pathologies that are intricately involved in brain functioning and behavior may not only contribute to somatic comorbidities in PTSD, but may represent novel targets for treating core psychiatric symptoms.


Subject(s)
Combat Disorders/drug therapy , Gastrointestinal Microbiome/drug effects , Inflammation/drug therapy , Metabolism/drug effects , Combat Disorders/physiopathology , Gastrointestinal Microbiome/physiology , Humans , Inflammation/physiopathology , Metabolism/physiology , Mitochondria/drug effects , Mitochondria/metabolism , Pharmacological Phenomena/physiology
9.
Sci Rep ; 8(1): 1542, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29367601

ABSTRACT

The cholesterol dependent cytolysins (CDCs) are a family of pore-forming toxins produced by a wide range of bacteria. Some CDCs are important virulence factors for their cognate organisms, but their activity must be tightly regulated to ensure they operate at appropriate times and within the appropriate subcellular compartments. pH-dependent activity has been described for several CDCs, but the mechanism of such regulation has been studied in depth only for listeriolysin O (LLO), which senses environmental pH through a triad of acidic residues that mediate protein unfolding. Here we present data supporting a distinct mechanism for pH-dependence for inerolysin (INY), the CDC produced by Lactobacillus iners. Inerolysin (INY) has an acidic pH optimum with loss of activity at neutral pH. INY pH-dependence is characterized by reversible loss of pore formation with preservation of membrane binding. Fluorescent membrane probe assays indicated that INY insertion into host cell membranes, but not oligomerization, was defective at neutral pH. These data support the existence of a newly appreciated form of CDC pH-dependence functioning at a late stage of pore formation.


Subject(s)
Bacterial Toxins/metabolism , Cell Membrane/metabolism , Lactobacillus/enzymology , Pore Forming Cytotoxic Proteins/metabolism , Hydrogen-Ion Concentration , Protein Binding
10.
Proc Natl Acad Sci U S A ; 112(38): E5308-17, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26324905

ABSTRACT

Prions are proteins that adopt alternative conformations that become self-propagating; the PrP(Sc) prion causes the rare human disorder Creutzfeldt-Jakob disease (CJD). We report here that multiple system atrophy (MSA) is caused by a different human prion composed of the α-synuclein protein. MSA is a slowly evolving disorder characterized by progressive loss of autonomic nervous system function and often signs of parkinsonism; the neuropathological hallmark of MSA is glial cytoplasmic inclusions consisting of filaments of α-synuclein. To determine whether human α-synuclein forms prions, we examined 14 human brain homogenates for transmission to cultured human embryonic kidney (HEK) cells expressing full-length, mutant human α-synuclein fused to yellow fluorescent protein (α-syn140*A53T-YFP) and TgM83(+/-) mice expressing α-synuclein (A53T). The TgM83(+/-) mice that were hemizygous for the mutant transgene did not develop spontaneous illness; in contrast, the TgM83(+/+) mice that were homozygous developed neurological dysfunction. Brain extracts from 14 MSA cases all transmitted neurodegeneration to TgM83(+/-) mice after incubation periods of ∼120 d, which was accompanied by deposition of α-synuclein within neuronal cell bodies and axons. All of the MSA extracts also induced aggregation of α-syn*A53T-YFP in cultured cells, whereas none of six Parkinson's disease (PD) extracts or a control sample did so. Our findings argue that MSA is caused by a unique strain of α-synuclein prions, which is different from the putative prions causing PD and from those causing spontaneous neurodegeneration in TgM83(+/+) mice. Remarkably, α-synuclein is the first new human prion to be identified, to our knowledge, since the discovery a half century ago that CJD was transmissible.


Subject(s)
Multiple System Atrophy/metabolism , Parkinsonian Disorders/metabolism , Prions/metabolism , alpha-Synuclein/metabolism , Aged , Animals , Brain/pathology , Exons , Female , HEK293 Cells , Humans , Immunohistochemistry , Male , Mice , Mice, Transgenic , Microscopy, Fluorescence , Middle Aged , Multiple System Atrophy/genetics , Neurodegenerative Diseases/metabolism , Phosphorylation , Polymorphism, Single Nucleotide , Ubiquinone/analogs & derivatives , Ubiquinone/metabolism , alpha-Synuclein/genetics
11.
Proc Natl Acad Sci U S A ; 112(35): E4949-58, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26286986

ABSTRACT

Increasingly, evidence argues that many neurodegenerative diseases, including progressive supranuclear palsy (PSP), are caused by prions, which are alternatively folded proteins undergoing self-propagation. In earlier studies, PSP prions were detected by infecting human embryonic kidney (HEK) cells expressing a tau fragment [TauRD(LM)] fused to yellow fluorescent protein (YFP). Here, we report on an improved bioassay using selective precipitation of tau prions from human PSP brain homogenates before infection of the HEK cells. Tau prions were measured by counting the number of cells with TauRD(LM)-YFP aggregates using confocal fluorescence microscopy. In parallel studies, we fused α-synuclein to YFP to bioassay α-synuclein prions in the brains of patients who died of multiple system atrophy (MSA). Previously, MSA prion detection required ∼120 d for transmission into transgenic mice, whereas our cultured cell assay needed only 4 d. Variation in MSA prion levels in four different brain regions from three patients provided evidence for three different MSA prion strains. Attempts to demonstrate α-synuclein prions in brain homogenates from Parkinson's disease patients were unsuccessful, identifying an important biological difference between the two synucleinopathies. Partial purification of tau and α-synuclein prions facilitated measuring the levels of these protein pathogens in human brains. Our studies should facilitate investigations of the pathogenesis of both tau and α-synuclein prion disorders as well as help decipher the basic biology of those prions that attack the CNS.


Subject(s)
Neurodegenerative Diseases/metabolism , Prions/metabolism , alpha-Synuclein/metabolism , Animals , HEK293 Cells , Humans , Mice , Neurodegenerative Diseases/pathology
12.
Infect Immun ; 81(12): 4544-50, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24082080

ABSTRACT

Gardnerella vaginalis, the bacterial species most frequently isolated from women with bacterial vaginosis (BV), produces a cholesterol-dependent cytolysin (CDC), vaginolysin (VLY). At sublytic concentrations, CDCs may initiate complex signaling cascades crucial to target cell survival. Using live-cell imaging, we observed the rapid formation of large membrane blebs in human vaginal and cervical epithelial cells (VK2 and HeLa cells) exposed to recombinant VLY toxin and to cell-free supernatants from growing liquid cultures of G. vaginalis. Binding of VLY to its human-specific receptor (hCD59) is required for bleb formation, as antibody inhibition of either toxin or hCD59 abrogates this response, and transfection of nonhuman cells (CHO-K1) with hCD59 renders them susceptible to toxin-induced membrane blebbing. Disruption of the pore formation process (by exposure to pore-deficient toxoids or pretreatment of cells with methyl-ß-cyclodextrin) or osmotic protection of target cells inhibits VLY-induced membrane blebbing. These results indicate that the formation of functional pores drives the observed ultrastructural rearrangements. Rapid bleb formation may represent a conserved response of epithelial cells to sublytic quantities of pore-forming toxins, and VLY-induced epithelial cell membrane blebbing in the vaginal mucosa may play a role in the pathogenesis of BV.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Cell Surface Extensions/microbiology , Gardnerella vaginalis/metabolism , Vaginosis, Bacterial/immunology , Animals , CD59 Antigens/metabolism , CHO Cells , Cervix Uteri/cytology , Cervix Uteri/immunology , Cervix Uteri/microbiology , Cricetulus , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Gardnerella vaginalis/growth & development , Gardnerella vaginalis/immunology , Gram-Positive Bacterial Infections , HeLa Cells , Humans , Signal Transduction , Vagina/cytology , Vagina/immunology , Vagina/microbiology , Vaginosis, Bacterial/microbiology , beta-Cyclodextrins
13.
Genome Announc ; 1(1)2013 Jan.
Article in English | MEDLINE | ID: mdl-23405291

ABSTRACT

Streptococcus intermedius is a human pathogen with a propensity for abscess formation. We report a high-quality draft genome sequence of S. intermedius strain BA1, an isolate from a human epidural abscess. This sequence provides insight into the biology of S. intermedius and will aid investigations of pathogenicity.

14.
J Antimicrob Chemother ; 67(12): 2870-2, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22855857

ABSTRACT

BACKGROUND: Retrocyclins are cyclic antimicrobial peptides that have been shown to be both broadly active and safe in animal models. RC-101, a synthetic retrocyclin, targets important human pathogens and is a candidate vaginal microbicide. Its activity against microbes associated with bacterial vaginosis is unknown. METHODS: We investigated the effect of RC-101 on toxin activity, bacterial growth and biofilm formation of Gardnerella vaginalis in vitro. RESULTS: RC-101 potently inhibits the cytolytic activity of vaginolysin, the Gardnerella vaginalis toxin, on both erythrocytes and nucleated cells. RC-101 lacks inhibitory activity against planktonic G. vaginalis but markedly decreases biofilm formation. CONCLUSIONS: These dual properties, toxin inhibition and biofilm retardation, justify further exploration of RC-101 as a candidate agent for bacterial vaginosis prevention.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Toxins/antagonists & inhibitors , Biofilms/drug effects , Defensins/pharmacology , Gardnerella vaginalis/drug effects , Gardnerella vaginalis/physiology , Bacterial Proteins/metabolism , Biofilms/growth & development , Gardnerella vaginalis/growth & development , Gardnerella vaginalis/pathogenicity , Humans
15.
Infect Immun ; 80(11): 3804-11, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22890993

ABSTRACT

The strong epidemiological association between cigarette smoke (CS) exposure and respiratory tract infections is conventionally attributed to immunosuppressive and irritant effects of CS on human cells. Since pathogenic bacteria such as Staphylococcus aureus are members of the normal microbiota and reside in close proximity to human nasopharyngeal cells, we hypothesized that bioactive components of CS might affect these organisms and potentiate their virulence. Using Staphylococcus aureus as a model organism, we observed that the presence of CS increased both biofilm formation and host cell adherence. Analysis of putative molecular pathways revealed that CS exposure decreased expression of the quorum-sensing agr system, which is involved in biofilm dispersal, and increased transcription of biofilm inducers such as sarA and rbf. CS contains bioactive compounds, including free radicals and reactive oxygen species, and we observed transcriptional induction of bacterial oxidoreductases, including superoxide dismutase, following exposure. Moreover, pretreatment of CS with an antioxidant abrogated CS-mediated enhancement of biofilms. Exposure of bacteria to hydrogen peroxide alone increased biofilm formation. These observations are consistent with the hypothesis that CS induces staphylococcal biofilm formation in an oxidant-dependent manner. CS treatment induced transcription of fnbA (encoding fibronectin binding protein A), leading to increased binding of CS-treated staphylococci to immobilized fibronectin and increased adherence to human cells. These observations indicate that the bioactive effects of CS may extend to the resident microbiota of the nasopharynx, with implications for the pathogenesis of respiratory infection in CS-exposed humans.


Subject(s)
Biofilms , Oxidative Stress/physiology , Smoking/adverse effects , Staphylococcal Infections/metabolism , Staphylococcus aureus/drug effects , Adhesins, Bacterial/drug effects , Bacterial Proteins/metabolism , Cell Line , Gene Expression Regulation, Bacterial , Humans , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/physiology , Transcription, Genetic , Virulence/drug effects
16.
Semin Fetal Neonatal Med ; 17(1): 51-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21920833

ABSTRACT

Our understanding of the bacterial species inhabiting the female genital tract has been limited primarily by our ability to detect them. Early investigations using microscopy and culture-based techniques identified lactobacilli as the predominant members of the vaginal microbiota and suggested that these organisms might serve a protective function at the mucosal surface. Improvements in cultivation techniques and the development of molecular-based detection strategies validated these early findings and enabled us to recognize that the microbiota of the female genital tract is much more complex than previously suspected. Disruption of the vaginal microbial community due to invasion of exogenous organisms or by overgrowth of one or more endogenous species has important health implications for both the mother and newborn.


Subject(s)
Genitalia, Female/microbiology , Lactobacillus/isolation & purification , Metagenome/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Female , Humans , Infant, Newborn , Lactobacillus/genetics , Polymerase Chain Reaction , Pregnancy , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics
17.
J Bacteriol ; 193(5): 1034-41, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21169489

ABSTRACT

Lactobacillus iners is a common constituent of the human vaginal microbiota. This species was only recently characterized due to its fastidious growth requirements and has been hypothesized to play a role in the pathogenesis of bacterial vaginosis. Here we present the identification and molecular characterization of a protein toxin produced by L. iners. The L. iners genome encodes an open reading frame with significant primary sequence similarity to intermedilysin (ILY; 69.2% similarity) and vaginolysin (VLY; 68.4% similarity), the cholesterol-dependent cytolysins from Streptococcus intermedius and Gardnerella vaginalis, respectively. Clinical isolates of L. iners produce this protein, inerolysin (INY), during growth in vitro, as assessed by Western analysis. INY is a pore-forming toxin that is activated by reducing agents and inhibited by excess cholesterol. It is active across a pH range of 4.5 to 6.0 but is inactive at pH 7.4. At sublytic concentrations, INY activates p38 mitogen-activated protein kinase and allows entry of fluorescent phalloidin into the cytoplasm of epithelial cells. Unlike VLY and ILY, which are human specific, INY is active against cells from a broad range of species. INY represents a new target for studies directed at understanding the role of L. iners in states of health and disease at the vaginal mucosal surface.


Subject(s)
Cholesterol/metabolism , Cytotoxins/metabolism , Lactobacillus/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cytotoxins/genetics , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Bacterial/radiation effects , Lactobacillus/drug effects , Lactobacillus/genetics , Mutation , Stress, Physiological , Ultraviolet Rays
18.
Infect Immun ; 78(5): 2146-52, 2010 May.
Article in English | MEDLINE | ID: mdl-20194598

ABSTRACT

The human upper respiratory tract, including the nasopharynx, is colonized by a diverse array of microorganisms. While the host generally exists in harmony with the commensal microflora, under certain conditions, these organisms may cause local or systemic disease. Respiratory epithelial cells act as local sentinels of the innate immune system, responding to conserved microbial patterns through activation of signal transduction pathways and cytokine production. In addition to colonizing microbes, these cells may also be influenced by environmental agents, including cigarette smoke (CS). Because of the strong relationship among secondhand smoke exposure, bacterial infection, and sinusitis, we hypothesized that components in CS might alter epithelial cell innate immune responses to pathogenic bacteria. We examined the effect of CS condensate (CSC) or extract (CSE) on signal transduction and cytokine production in primary and immortalized epithelial cells of human or murine origin in response to nontypeable Haemophilus influenzae and Staphylococcus aureus. We observed that epithelial production of interleukin-8 (IL-8) and IL-6 in response to bacterial stimulation was significantly inhibited in the presence of CS (P < 0.001 for inhibition by either CSC or CSE). In contrast, epithelial production of beta interferon (IFN-beta) was not inhibited. CSC decreased NF-kappaB activation (P < 0.05) and altered the kinetics of mitogen-activated protein kinase phosphorylation in cells exposed to bacteria. Treatment of CSC with antioxidants abrogated CSC-mediated reduction of epithelial IL-8 responses to bacteria (P > 0.05 compared to cells without CSC treatment). These results identify a novel oxidant-mediated immunosuppressive role for CS in epithelial cells.


Subject(s)
Epithelial Cells/drug effects , Epithelial Cells/immunology , Haemophilus influenzae/immunology , Immunity, Innate/drug effects , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Smoke , Staphylococcus aureus/immunology , Animals , Cell Line , Cells, Cultured , Humans , Interferon-beta/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects
19.
Infect Immun ; 76(11): 5181-90, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18765742

ABSTRACT

Yersinia pestis, the bacterial agent of plague, secretes several proteins important for pathogenesis or host protection. The F1 protein forms a capsule on the bacterial cell surface and is a well-characterized protective antigen but is not essential for virulence. A type III secretion system that is essential for virulence exports Yop proteins, which function as antiphagocytic or anti-inflammatory factors. Yop effectors (e.g., YopE) are delivered across the host cell plasma membrane by a translocon, composed of YopB and YopD. Complexes of YopB, YopD, and YopE (BDE) secreted by Yersinia pseudotuberculosis were purified by affinity chromatography and used as immunogens to determine if antibodies to the translocon could provide protection against Y. pestis in mice. Mice vaccinated with BDE generated high-titer immunoglobulin G antibodies specific for BDE, as shown by enzyme-linked immunosorbent assay and immunoblotting, and were protected against lethal intravenous challenge with F1(-) but not F1(+) Y. pestis. Mice passively immunized with anti-BDE serum were protected from lethal challenge with F1(-) Y. pestis. The YopB protein or a complex of YopB and YopD (BD) was purified and determined by vaccination to be immunogenic in mice. Mice actively vaccinated with BD or passively vaccinated with anti-BD serum were protected against lethal challenge with F1(-) Y. pestis. These results indicate that anti-translocon antibodies can be used as immunotherapy to treat infections by F1(-) Y. pestis.


Subject(s)
Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Immunization, Passive/methods , Plague/prevention & control , Animals , Antibodies, Bacterial/therapeutic use , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Mice , Mice, Inbred BALB C , Plague Vaccine/immunology , Vaccination/methods , Yersinia pestis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...