Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 112(49): 15178-83, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26598665

ABSTRACT

Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the "lock-and-key theory" of P. falciparum globalization, is proposed, and its implications are discussed.


Subject(s)
Anopheles/immunology , Immune Evasion , Malaria, Falciparum/transmission , Plasmodium falciparum/physiology , Animals , Anopheles/parasitology , Insect Vectors , Molecular Sequence Data
2.
Proc Natl Acad Sci U S A ; 112(5): 1273-80, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25552553

ABSTRACT

The malaria parasite, Plasmodium, must survive and develop in the mosquito vector to be successfully transmitted to a new host. The Plasmodium falciparum Pfs47 gene is critical for malaria transmission. Parasites that express Pfs47 (NF54 WT) evade mosquito immunity and survive, whereas Pfs47 knockouts (KO) are efficiently eliminated by the complement-like system. Two alternative approaches were used to investigate the mechanism of action of Pfs47 on immune evasion. First, we examined whether Pfs47 affected signal transduction pathways mediating mosquito immune responses, and show that the Jun-N-terminal kinase (JNK) pathway is a key mediator of Anopheles gambiae antiplasmodial responses to P. falciparum infection and that Pfs47 disrupts JNK signaling. Second, we used microarrays to compare the global transcriptional responses of A. gambiae midguts to infection with WT and KO parasites. The presence of Pfs47 results in broad and profound changes in gene expression in response to infection that are already evident 12 h postfeeding, but become most prominent at 26 h postfeeding, the time when ookinetes invade the mosquito midgut. Silencing of 15 differentially expressed candidate genes identified caspase-S2 as a key effector of Plasmodium elimination in parasites lacking Pfs47. We provide experimental evidence that JNK pathway regulates activation of caspases in Plasmodium-invaded midgut cells, and that caspase activation is required to trigger midgut epithelial nitration. Pfs47 alters the cell death pathway of invaded midgut cells by disrupting JNK signaling and prevents the activation of several caspases, resulting in an ineffective nitration response that makes the parasite undetectable by the mosquito complement-like system.


Subject(s)
Anopheles/immunology , Apoptosis/physiology , MAP Kinase Kinase 4/metabolism , Plasmodium falciparum/physiology , Animals , Anopheles/parasitology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/physiology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/physiology
3.
BMC Genomics ; 15: 636, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25073905

ABSTRACT

BACKGROUND: Genome sequencing of Anopheles gambiae was completed more than ten years ago and has accelerated research on malaria transmission. However, annotation needs to be refined and verified experimentally, as most predicted transcripts have been identified by comparative analysis with genomes from other species. The mosquito midgut-the first organ to interact with Plasmodium parasites-mounts effective antiplasmodial responses that limit parasite survival and disease transmission. High-throughput Illumina sequencing of the midgut transcriptome was used to identify new genes and transcripts, contributing to the refinement of An. gambiae genome annotation. RESULTS: We sequenced ~223 million reads from An. gambiae midgut cDNA libraries generated from susceptible (G3) and refractory (L35) mosquito strains. Mosquitoes were infected with either Plasmodium berghei or Plasmodium falciparum, and midguts were collected after the first or second Plasmodium infection. In total, 22,889 unique midgut transcript models were generated from both An. gambiae strain sequences combined, and 76% are potentially novel. Of these novel transcripts, 49.5% aligned with annotated genes and appear to be isoforms or pre-mRNAs of reference transcripts, while 50.5% mapped to regions between annotated genes and represent novel intergenic transcripts (NITs). Predicted models were validated for midgut expression using qRT-PCR and microarray analysis, and novel isoforms were confirmed by sequencing predicted intron-exon boundaries. Coding potential analysis revealed that 43% of total midgut transcripts appear to be long non-coding RNA (lncRNA), and functional annotation of NITs showed that 68% had no homology to current databases from other species. Reads were also analyzed using de novo assembly and predicted transcripts compared with genome mapping-based models. Finally, variant analysis of G3 and L35 midgut transcripts detected 160,742 variants with respect to the An. gambiae PEST genome, and 74% were new variants. Intergenic transcripts had a higher frequency of variation compared with non-intergenic transcripts. CONCLUSION: This in-depth Illumina sequencing and assembly of the An. gambiae midgut transcriptome doubled the number of known transcripts and tripled the number of variants known in this mosquito species. It also revealed existence of a large number of lncRNA and opens new possibilities for investigating the biological function of many newly discovered transcripts.


Subject(s)
Anopheles/genetics , Intestinal Mucosa/metabolism , Molecular Sequence Annotation/methods , Transcriptome , Animals , Anopheles/embryology , Anopheles/parasitology , Genetic Variation , Genomics , High-Throughput Nucleotide Sequencing , Plasmodium berghei/physiology , Plasmodium falciparum/physiology , RNA, Messenger/genetics , Sequence Analysis, RNA
4.
Trans R Soc Trop Med Hyg ; 103(11): 1121-6, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19303125

ABSTRACT

Insecticide resistance in Anopheles gambiae threatens the success of malaria vector control programmes in sub-Saharan Africa. In order to manage insecticide resistance successfully, it is essential to assess continuously the target mosquito population. Here, we collected baseline information on the distribution and prevalence of insecticide resistance and its association with target-site mutations in eastern Uganda. Anopheles gambiae s.l. adults were raised from wild-caught larvae sampled from two ecologically distinct breeding sites and exposed to WHO discriminating concentrations of DDT, permethrin, deltamethrin, bendiocarb and malathion. Survival rates to DDT were as high as 85.4%, alongside significant resistance levels to permethrin (38.5%), reduced susceptibility to deltamethrin, but full susceptibility to bendiocarb and malathion. Using molecular diagnostics, susceptible and resistant specimens were further tested for the presence of knockdown resistance (kdr) and acetylcholinesterase 1 resistance (ace-1(R)) alleles. While ace-1(R) and kdrL1014F ('kdr west') alleles were absent, the kdr L1014S ('kdr east') allele was present in both populations. In A. gambiae s.s., L1014S was closely associated with DDT and, to a lesser degree, with permethrin resistance. Intriguingly, the association between DDT resistance and the presence of L1014S is consistent with a co-dominant effect, with heterozygous individuals showing an intermediate phenotype.


Subject(s)
Anopheles/genetics , Insecticide Resistance/genetics , Point Mutation/genetics , Animals , Anopheles/drug effects , DDT/pharmacology , Female , Gene Frequency , Insecticides/pharmacology , Larva/drug effects , Nitriles/pharmacology , Permethrin/pharmacology , Polymerase Chain Reaction , Pyrethrins/pharmacology , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL
...