Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37242979

ABSTRACT

In the presented work, poly(3-hydroxybutyrate)-PHB-based composite blends for bone medical applications and tissue engineering are prepared and characterized. PHB used for the work was in two cases commercial and, in one case, was extracted by the chloroform-free route. PHB was then blended with poly(lactic acid) (PLA) or polycaprolactone (PCL) and plasticized by oligomeric adipate ester (Syncroflex, SN). Tricalcium phosphate (TCP) particles were used as a bioactive filler. Prepared polymer blends were processed into the form of 3D printing filaments. The samples for all the tests performed were prepared by FDM 3D printing or compression molding. Differential scanning calorimetry was conducted to evaluate the thermal properties, followed by optimization of printing temperature by temperature tower test and determination of warping coefficient. Tensile test, three-point flexural test, and compression test were performed to study the mechanical properties of materials. Optical contact angle measurement was conducted to determine the surface properties of these blends and their influence on cell adhesion. Cytotoxicity measurement of prepared blends was conducted to find out whether the prepared materials were non-cytotoxic. The best temperatures for 3D printing were 195/190, 195/175, and 195/165 °C for PHB-soap/PLA-SN, PHB/PCL-SN, and PHB/PCL-SN-TCP, respectively. Their mechanical properties (strengths ~40 MPa, moduli ~2.5 GPa) were comparable with human trabecular bone. The calculated surface energies of all blends were ~40 mN/m. Unfortunately, only two out of three materials were proven to be non-cytotoxic (both PHB/PCL blends).

2.
Int J Nanomedicine ; 18: 541-560, 2023.
Article in English | MEDLINE | ID: mdl-36756052

ABSTRACT

Purpose: Osteoporosis is a severe health problem with social and economic impacts on society. The standard treatment consists of the systemic administration of drugs such as bisphosphonates, with alendronate (ALN) being one of the most common. Nevertheless, complications of systemic administration occur with this drug. Therefore, it is necessary to develop new strategies, such as local administration. Methods: In this study, emulsion/dispersion scaffolds based on W/O emulsion of PCL and PF68 with ALN, containing hydroxyapatite (HA) nanoparticles as the dispersion phase were prepared using electrospinning. Scaffolds with different release kinetics were tested in vitro on the co-cultures of osteoblasts and osteoclast-like cells, isolated from adult osteoporotic and control rats. Cell viability, proliferation, ALP, TRAP and CA II activity were examined. A scaffold with a gradual release of ALN was tested in vivo in the bone defects of osteoporotic and control rats. Results: The release kinetics were dependent on the scaffold composition and the used system of the poloxamers. The ALN was released from the scaffolds for more than 22 days. The behavior of cells cultured in vitro on scaffolds with different release kinetics was comparable. The difference was evident between cell co-cultures isolated from osteoporotic and control animals. The PCL/HA scaffold show slow degradation in vivo and residual scaffold limited new bone formation inside the defects. Nevertheless, the released ALN supported bone formation in the areas surrounding the residual scaffold. Interestingly, a positive effect of systemic administration of ALN was not proved. Conclusion: The prepared scaffolds enabled tunable control release of ALN. The effect of ALN was proved in vitro and in in vivo study supported peri-implant bone formation.


Subject(s)
Alendronate , Bone Density Conservation Agents , Rats , Animals , Alendronate/pharmacology , Emulsions/pharmacology , Osteogenesis , Osteoclasts , Osteoblasts , Durapatite/pharmacology , Bone Density Conservation Agents/pharmacology
3.
Int J Mol Sci ; 23(14)2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35887222

ABSTRACT

Co-cultures of osteoblasts and osteoclasts are on the rise because they enable a more complex study. Diseases such as osteoporosis are related to a higher age. Thus, cell isolation from adult individuals is necessary. Osteoblasts can be isolated from the rat femur by three methods: explant culture, explant culture with enzymatic pre-treatment, or enzymatic treatment. The isolation methods yield different populations of osteoblasts which, in a co-culture with peripheral blood mononuclear cells, might result in differences in osteoclastogenesis. Therefore, we examined the differences in osteogenic markers, cell proliferation, and the metabolic activity of isolated osteoblast-like cells in a growth and differentiation medium. We then evaluated the effect of the isolated populations of osteoblast-like cells on osteoclastogenesis in a subsequent co-culture by evaluating osteoclast markers, counting formed osteoclast-like cells, and analyzing their area and number of nuclei. Co-cultures were performed in the presence or absence of osteoclastogenic growth factors, M-CSF and RANKL. It was discovered that enzymatic isolation is not feasible in adult rats, but explant culture and explant culture with enzymatic pre-treatment were both successful. Explant culture with enzymatic pre-treatment yielded cells with a higher proliferation than explant culture in a growth medium. The differentiation medium reduced differences in proliferation during the culture. Some differences in metabolic activity and ALP activity were also found between the osteoblast-like cells isolated by explant culture or by explant culture with enzymatic pre-treatment, but only on some days of cultivation. According to microscopy, the presence of exogenous growth factors supporting osteoclastogenesis in co-cultures was necessary for the formation of osteoclast-like cells. In this case, the formation of a higher number of osteoclast-like cells with a larger area was observed in the co-culture with osteoblast-like cells isolated by explant culture compared to the explant culture with enzymatic pre-treatment. Apart from this observation, no differences in osteoclast markers were noted between the co-cultures with osteoblast-like cells isolated by explant culture and the explant culture with enzymatic pre-treatment. The TRAP and CA II activity was higher in the co-cultures with exogenous growth than that in the co-cultures without exogenous growth factors on day 7, but the opposite was true on day 14. To conclude, explant culture and explant culture with enzymatic pre-treatment are both suitable methods to yield osteoblast-like cells from adult rats capable of promoting osteoclastogenesis in a direct co-culture with peripheral blood mononuclear cells. Explant culture with enzymatic pre-treatment yielded cells with a higher proliferation. The explant culture yielded osteoblast-like cells which induced the formation of a higher number of osteoclast-like cells with a larger area compared to the explant culture with enzymatic pre-treatment when cultured with exogenous M-CSF and RANKL.


Subject(s)
Macrophage Colony-Stimulating Factor , Osteogenesis , Animals , Cell Differentiation , Cells, Cultured , Coculture Techniques , Leukocytes, Mononuclear/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Osteoblasts/metabolism , Osteoclasts/metabolism , RANK Ligand/metabolism , Rats
4.
Biomedicines ; 9(7)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202232

ABSTRACT

Many growth factors have been studied as additives accelerating lumbar fusion rates in different animal models. However, their low hydrolytic and thermal stability both in vitro and in vivo limits their workability and use. In the proposed work, a stabilized vasculogenic and prohealing fibroblast growth factor-2 (FGF2-STAB®) exhibiting a functional half-life in vitro at 37 °C more than 20 days was applied for lumbar fusion in combination with a bioresorbable scaffold on porcine models. An experimental animal study was designed to investigate the intervertebral fusion efficiency and safety of a bioresorbable ceramic/biopolymer hybrid implant enriched with FGF2-STAB® in comparison with a tricortical bone autograft used as a gold standard. Twenty-four experimental pigs underwent L2/3 discectomy with implantation of either the tricortical iliac crest bone autograft or the bioresorbable hybrid implant (BHI) followed by lateral intervertebral fixation. The quality of spinal fusion was assessed by micro-computed tomography (micro-CT), biomechanical testing, and histological examination at both 8 and 16 weeks after the surgery. While 8 weeks after implantation, micro-CT analysis demonstrated similar fusion quality in both groups, in contrast, spines with BHI involving inorganic hydroxyapatite and tricalcium phosphate along with organic collagen, oxidized cellulose, and FGF2- STAB® showed a significant increase in a fusion quality in comparison to the autograft group 16 weeks post-surgery (p = 0.023). Biomechanical testing revealed significantly higher stiffness of spines treated with the bioresorbable hybrid implant group compared to the autograft group (p < 0.05). Whilst histomorphological evaluation showed significant progression of new bone formation in the BHI group besides non-union and fibrocartilage tissue formed in the autograft group. Significant osteoinductive effects of BHI based on bioceramics, collagen, oxidized cellulose, and FGF2-STAB® could improve outcomes in spinal fusion surgery and bone tissue regeneration.

5.
Biomolecules ; 11(3)2021 03 16.
Article in English | MEDLINE | ID: mdl-33809737

ABSTRACT

Bisphosphonates (BPs) are compounds resembling the pyrophosphate structure. BPs bind the mineral component of bones. During the bone resorption by osteoclasts, nitrogen-containing BPs are released and internalized, causing an inhibition of the mevalonate pathway. As a consequence, osteoclasts are unable to execute their function. Alendronate (ALN) is a bisphosphonate used to treat osteoporosis. Its administration could be associated with adverse effects. The purpose of this study is to evaluate four different ALN concentrations, ranging from 10-6 to 10-10 M, in the presence of different combinations of M-CSF and RANKL, to find out the effect of low ALN concentrations on osteoclastogenesis using rat and human peripheral blood mononuclear cells. The cytotoxic effect of ALN was evaluated based on metabolic activity and DNA concentration measurement. The alteration in osteoclastogenesis was assessed by the activity of carbonic anhydrase II (CA II), tartrate-resistant acid phosphatase staining, and actin ring formation. The ALN concentration of 10-6 M was cytotoxic. Low ALN concentrations of 10-8 and 10-10 M promoted proliferation, osteoclast-like cell formation, and CA II activity. The results indicated the induction of osteoclastogenesis with low ALN concentrations. However, when high doses of ALN were administered, their cytotoxic effect was demonstrated.


Subject(s)
Alendronate/pharmacology , Macrophage Colony-Stimulating Factor/pharmacology , Osteogenesis/drug effects , RANK Ligand/pharmacology , Actins/metabolism , Animals , Carbonic Anhydrase II/metabolism , Cell Proliferation/drug effects , DNA/metabolism , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Osteoclasts/drug effects , Osteoclasts/enzymology , Osteoclasts/metabolism , Rats , Staining and Labeling , Tartrate-Resistant Acid Phosphatase/metabolism
6.
Polymers (Basel) ; 12(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260879

ABSTRACT

Tissue engineering is a current trend in the regenerative medicine putting pressure on scientists to develop highly functional materials and methods for scaffolds' preparation. In this paper, the calibrated filaments for Fused Deposition Modeling (FDM) based on plasticized poly(3-hydroxybutyrate)/poly(d,l-lactide) 70/30 blend modified with tricalcium phosphate bioceramics were prepared. Two different plasticizers, Citroflex (n-Butyryl tri-n-hexyl citrate) and Syncroflex (oligomeric adipate ester), both used in the amount of 12 wt%, were compared. The printing parameters for these materials were optimized and the printability was evaluated by recently published warping test. The samples were studied with respect to their thermal and mechanical properties, followed by biological in vitro tests including proliferation, viability, and osteogenic differentiation of human mesenchymal stem cells. According to the results from differential scanning calorimetry and tensile measurements, the Citroflex-based plasticizer showed very good softening effect at the expense of worse printability and unsatisfactory performance during biological testing. On the other hand, the samples with Syncroflex demonstrated lower warping tendency compared to commercial polylactide filament with the warping coefficient one third lower. Moreover, the Syncroflex-based samples exhibited the non-cytotoxicity and promising biocompatibility.

7.
Bone Joint Res ; 9(7): 412-420, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32864112

ABSTRACT

AIMS: Here we introduce a wide and complex study comparing effects of growth factors used alone and in combinations on human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation. Certain ways of cell behaviour can be triggered by specific peptides - growth factors, influencing cell fate through surface cellular receptors. METHODS: In our study transforming growth factor ß (TGF-ß), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF) were used in order to induce osteogenesis and proliferation of hMSCs from bone marrow. These cells are naturally able to differentiate into various mesodermal cell lines. Effect of each factor itself is pretty well known. We designed experimental groups where two and more growth factors were combined. We supposed cumulative effect would appear when more growth factors with the same effect were combined. The cellular metabolism was evaluated using MTS assay and double-stranded DNA (dsDNA) amount using PicoGreen assay. Alkaline phosphatase (ALP) activity, as early osteogenesis marker, was observed. Phase contrast microscopy was used for cell morphology evaluation. RESULTS: TGF-ß and bFGF were shown to significantly enhance cell proliferation. VEGF and IGF-1 supported ALP activity. Light microscopy showed initial extracellular matrix mineralization after VEGF/IGF-1 supply. CONCLUSION: A combination of more than two growth factors did not support the cellular metabolism level and ALP activity even though the growth factor itself had a positive effect. This is probably caused by interplay of various messengers shared by more growth factor signalling cascades.Cite this article: Bone Joint Res 2020;9(7):412-420.

8.
Nanomaterials (Basel) ; 10(9)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927642

ABSTRACT

Vitiligo is the most common depigmentation disorder of the skin. Currently, its therapy focuses on the halting of the immune response and stimulation of the regenerative processes, leading to the restoration of normal melanocyte function. Platelet-rich plasma (PRP) represents a safe and cheap regenerative therapy option, as it delivers a wide spectrum of native growth factors, cytokines and other bioactive molecules. The aim of this study was to develop a simple delivery system to prolong the effects of the bioactive molecules released from platelets. The surface of electrospun and centrifugally spun poly-ε-caprolactone (PCL) fibrous scaffolds was functionalized with various concentrations of platelets; the influence of the morphology of the scaffolds and the concentration of the released platelet-derived bioactive molecules on melanocytes, was then assessed. An almost two-fold increase in the amount of the released bioactive molecules was detected on the centrifugally spun vs. electrospun scaffolds, and a sustained 14-day release of the bioactive molecules was demonstrated. A strong concentration-dependent response of melanocyte to the bioactive molecules was observed; higher concentrations of bioactive molecules resulted in improved metabolic activity and proliferation of melanocytes. This simple system improves melanocyte viability, offers on-site preparation and is suitable for prolonged topical PRP administration.

9.
Nanomaterials (Basel) ; 10(8)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751860

ABSTRACT

Hydrogels are suitable for osteochondral defect regeneration as they mimic the viscoelastic environment of cartilage. However, their biomechanical properties are not sufficient to withstand high mechanical forces. Therefore, we have prepared electrospun poly-ε-caprolactone-chitosan (PCL-chit) and poly(ethylene oxide)-chitosan (PEO-chit) nanofibers, and FTIR analysis confirmed successful blending of chitosan with other polymers. The biocompatibility of PCL-chit and PEO-chit scaffolds was tested; fibrochondrocytes and chondrocytes seeded on PCL-chit showed superior metabolic activity. The PCL-chit nanofibers were cryogenically grinded into microparticles (mean size of about 500 µm) and further modified by polyethylene glycol-biotin in order to bind the anti-CD44 antibody, a glycoprotein interacting with hyaluronic acid (PCL-chit-PEGb-antiCD44). The PCL-chit or PCL-chit-PEGb-antiCD44 microparticles were mixed with a composite gel (collagen/fibrin/platelet rich plasma) to improve its biomechanical properties. The storage modulus was higher in the composite gel with microparticles compared to fibrin. The Eloss of the composite gel and fibrin was higher than that of the composite gel with microparticles. The composite gel either with or without microparticles was further tested in vivo in a model of osteochondral defects in rabbits. PCL-chit-PEGb-antiCD44 significantly enhanced osteogenic regeneration, mainly by desmogenous ossification, but decreased chondrogenic differentiation in the defects. PCL-chit-PEGb showed a more homogeneous distribution of hyaline cartilage and enhanced hyaline cartilage differentiation.

10.
Regen Med ; 14(5): 423-445, 2019 05.
Article in English | MEDLINE | ID: mdl-31180294

ABSTRACT

Aim: This study evaluates the effect of electrospun dressings in critical sized full-thickness skin defects in rabbits. Materials & methods: Electrospun poly-ε-caprolactone (PCL) and polyvinyl alcohol (PVA) nanofibers were tested in vitro and in vivo. Results: The PCL scaffold supported the proliferation of mesenchymal stem cells, fibroblasts and keratinocytes. The PVA scaffold showed significant swelling, high elongation capacity, limited protein adsorption and stimulation of cells. Nanofibrous dressings improved wound healing compared with the control group in vivo. A change of the PCL dressing every 7 days resulted in a decreased epithelial thickness and type I collagen level in the adhesive group, indicating peeling off of the newly formed tissue. In the PVA dressings, the exchange did not affect healing. Conclusion: The results demonstrate the importance of proper dressing exchange.


Subject(s)
Bandages , Nanofibers/chemistry , Polyesters , Skin , Tissue Adhesives , Wound Healing/drug effects , 3T3 Cells , Animals , Mice , Polyesters/chemistry , Polyesters/pharmacology , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology , Rabbits , Skin/injuries , Skin/metabolism , Skin/pathology , Swine , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology
11.
Mater Sci Eng C Mater Biol Appl ; 100: 236-246, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30948058

ABSTRACT

Crosslinked 3D porous collagen-polysaccharide scaffolds, prepared by freeze-drying, were modified with bovine platelet lysate (BPL) and evaluated in terms of chemical, physical and biological properties. Natural antibacterial polysaccharides like chitosan, chitin/chitosan-glucan complex and calcium salt of oxidized cellulose (CaOC) incorporated in collagen scaffolds affected not only chemo-physical properties of the composite scaffolds but also improved their biological properties, especially when BPL was presented. Lipophilic BPL formed microspheres in porous scaffolds while reduced by half their swelling ratio. The resistance of collagen sponges to hydrolytic degradation in water depended strongly on chemical crosslinking varying from 60 min to more than one year. According to in-vitro tests, chemically crosslinked scaffolds exhibited a good cellular response, cell-matrix interactions, and biocompatibility of the material. The combination of collagen with natural polysaccharides confirmed a significant positive synergistic effect on cultivation of cells as determined by MTS assay and PicoGreen method, as well as on angiogenesis evaluated by ex ovo Chick Chorioallantoic Membrane (CAM) assay. Contrary, modification only by BLP of pure collagen scaffolds exhibited decreased biocompatibility in comparison to unmodified pure collagen scaffold. We propose that the newly developed crosslinked collagen sponges involving bioactive additives could be used as scaffold for growing cells in systems with low mechanical loading in tissue engineering, especially in dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration.


Subject(s)
Blood Platelets/metabolism , Collagen/pharmacology , Polysaccharides/pharmacology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , 3T3 Cells , Animals , Cattle , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Chickens , Cross-Linking Reagents/chemistry , Fibroblasts/cytology , Fibroblasts/drug effects , Hydrolysis , Mice , Neovascularization, Physiologic/drug effects , Temperature , Water/chemistry
12.
Mater Sci Eng C Mater Biol Appl ; 100: 544-553, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30948091

ABSTRACT

The structure degradation and strength changes of calcium phosphate scaffolds after long-term exposure to an acidic environment simulating the osteoclastic activity were determined and compared. Sintered calcium phosphate scaffolds with different phase structures were prepared with a similar cellular pore structure and an open porosity of over 80%. Due to microstructural features the biphasic calcium phosphate (BCP) scaffolds had a higher compressive strength of 1.7 MPa compared with the hydroxyapatite (HA) and ß-tricalcium phosphate (TCP) scaffolds, which exhibited a similar strength of 1.2 MPa. After exposure to an acidic buffer solution of pH = 5.5, the strength of the HA scaffolds did not change over 14 days. On the other hand, the strength of the TCP scaffolds decreased steeply in the first 2 days and reached a negligible value of 0.09 MPa after 14 days. The strength of the BCP scaffolds showed a steady decrease with a reasonable value of 0.5 MPa after 14 days. The mass loss, phase composition and microstructural changes of the scaffolds during degradation in the acidic environment were investigated and a mechanism of scaffold degradation was proposed. The BCP scaffold showed the best cell response in the in vitro tests. The BCP scaffold structure with the highly soluble phase (α-TCP) embedded in a less soluble matrix (ß-TCP/HA) exhibited a controllable degradation with a suitable strength stability and with beneficial biological behavior it represented the preferred calcium phosphate structure for a resorbable bone scaffold.


Subject(s)
Bone and Bones/physiology , Calcium Phosphates/chemistry , Tissue Scaffolds/chemistry , Cell Adhesion , Ceramics/chemistry , Compressive Strength , DNA/metabolism , Humans , Hydrogen-Ion Concentration , Mesenchymal Stem Cells/cytology , Porosity
13.
Int J Mol Sci ; 20(2)2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30658476

ABSTRACT

The current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation with the evolution of the setting reaction. The study proposes that it is possible to improve and tune the properties of CPCs via the addition of a thermosensitive, biodegradable, thixotropic copolymer based on poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA⁻PEG⁻PLGA) which undergoes gelation under physiological conditions. The setting times of alpha-tricalcium phosphate (α-TCP) mixed with aqueous solutions of PLGA⁻PEG⁻PLGA determined by means of time-sweep curves revealed a lag phase during the dissolution of the α-TCP particles. The magnitude of the storage modulus at lag phase depends on the liquid to powder ratio, the copolymer concentration and temperature. A sharp increase in the storage modulus was observed at the time of the precipitation of calcium deficient hydroxyapatite (CDHA) crystals, representing the loss of paste workability. The PLGA⁻PEG⁻PLGA copolymer demonstrates the desired pseudoplastic rheological behaviour with a small decrease in shear stress and the rapid recovery of the viscous state once the shear is removed, thus preventing CPC phase separation and providing good cohesion. Preliminary cytocompatibility tests performed on human mesenchymal stem cells proved the suitability of the novel copolymer/α-TCP for the purposes of mini-invasive surgery.


Subject(s)
Bone Cements/chemistry , Calcium Phosphates/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polyglactin 910/chemistry , Biocompatible Materials/chemistry , Cell Survival , Cells, Cultured , Humans , Hydrogen-Ion Concentration , Materials Testing , Mechanical Phenomena , Molecular Structure , Polyethylene Glycols/chemical synthesis , Polyglactin 910/chemical synthesis , Polymerization , Rheology
14.
Biomed Mater ; 13(6): 065009, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30177582

ABSTRACT

The study involved the electrospinning of the copolymer poly(L-lactide-co-ε-caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 ± 0.19 µm and fiber diameters of 5.58 ± 0.10 µm. Unlike fibrous polycaprolactone, the electrospun PLCL copolymer promoted fibroblast and endothelial cell adhesion and proliferation in vitro. Moreover, the regeneration of the vessel wall was detected following implantation and, after six months, the endothelialization of the lumen and the infiltration of arranged smooth muscle cells producing collagen was observed. However, the degradation rate was found to be accelerated in the rabbit animal model. The study was conducted under conditions that reflected the clinical requirements-the prostheses were sutured in the end-to-side fashion and the long-term end point of prosthesis healing was assessed. The regeneration of the vessel wall in terms of endothelialization, smooth cell infiltration and the presence of collagen fibers was observed after six months in vivo. A part of the grafts failed due to the rapid degradation rate of the PLCL copolymer.


Subject(s)
Blood Vessel Prosthesis , Carotid Arteries/pathology , Polyesters/chemistry , Vascular Grafting , 3T3 Cells , Animals , Aorta/pathology , Cell Adhesion , Collagen/metabolism , Dogs , Endothelial Cells , Fibroblasts/cytology , Human Umbilical Vein Endothelial Cells , Humans , Imaging, Three-Dimensional , Mice , Myocytes, Smooth Muscle/cytology , Polymers/chemistry , Porosity , Rabbits , Rats , Regeneration , Swine , Tissue Engineering/methods , Tissue Scaffolds , X-Ray Microtomography
15.
Int J Nanomedicine ; 13: 3129-3143, 2018.
Article in English | MEDLINE | ID: mdl-29881270

ABSTRACT

PURPOSE: Incisional hernia repair is an unsuccessful field of surgery, with long-term recurrence rates reaching up to 50% regardless of technique or mesh material used. Various implants and their positioning within the abdominal wall pose numerous long-term complications that are difficult to treat due to their permanent nature and the chronic foreign body reaction they trigger. Materials mimicking the 3D structure of the extracellular matrix promote cell adhesion, proliferation, migration, and differentiation. Some electrospun nanofibrous scaffolds provide a topography of a natural extracellular matrix and are cost effective to manufacture. MATERIALS AND METHODS: A composite scaffold that was assembled out of a standard polypropylene hernia mesh and poly-ε-caprolactone (PCL) nanofibers was tested in a large animal model (minipig), and the final scar tissue was subjected to histological and biomechanical testing to verify our in vitro results published previously. RESULTS: We have demonstrated that a layer of PCL nanofibers leads to tissue overgrowth and the formation of a thick fibrous plate around the implant. Collagen maturation is accelerated, and the final scar is more flexible and elastic than under a standard polypropylene mesh with less pronounced shrinkage observed. However, the samples with the composite scaffold were less resistant to distracting forces than when a standard mesh was used. We believe that the adverse effects could be caused due to the material assembly, as they do not comply with our previous results. CONCLUSION: We believe that PCL nanofibers on their own can cause enough fibroplasia to be used as a separate material without the polypropylene base, thus avoiding potential adverse effects caused by any added substances.


Subject(s)
Hernia , Herniorrhaphy/methods , Nanofibers/chemistry , Surgical Mesh , Abdominal Wall/surgery , Animals , Collagen/metabolism , Disease Models, Animal , Female , Herniorrhaphy/instrumentation , Materials Testing , Mice , Polyesters , Polypropylenes/chemistry , Swine , Swine, Miniature , Tissue Scaffolds/chemistry
16.
J Tissue Eng Regen Med ; 12(3): 583-597, 2018 03.
Article in English | MEDLINE | ID: mdl-28508471

ABSTRACT

In the present work, we developed a novel needleless emulsion electrospinning technique that improves the production rate of the core/shell production process. The nanofibres are based on poly-ε-caprolactone (PCL) as a continuous phase combined with a droplet phase based on Pluronic F-68 (PF-68). The PCL-PF-68 nanofibres show a time-regulated release of active molecules. Needleless emulsion electrospinning was used to encapsulate a diverse set of compounds to the core phase [i.e. 5-(4,6-dichlorotriazinyl) aminofluorescein -PF-68, horseradish peroxidase, Tetramethylrhodamine-dextran, insulin growth factor-I, transforming growth factor-ß and basic fibroblast growth factor]. In addition, the PF-68 facilitates the preservation of the bioactivity of delivered proteins. The system's potential was highlighted by an improvement in the metabolic activity and proliferation of mesenchymal stem cells. The developed system has the potential to deliver susceptible molecules in tissue-engineering applications.


Subject(s)
Emulsions/chemistry , Proteins/administration & dosage , Tissue Engineering/methods , Animals , Biocompatible Materials/pharmacology , Collagen Type II/metabolism , Dextrans/chemistry , Horseradish Peroxidase/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Nanofibers/chemistry , Nanofibers/ultrastructure , Needles , Poloxamer/chemistry , Polyesters/chemistry , Rhodamines/chemistry , Swine , Swine, Miniature , Tissue Scaffolds/chemistry
17.
Platelets ; 29(4): 395-405, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28649896

ABSTRACT

Platelets are a popular source of native growth factors for tissue engineering applications. The aim of the study was to verify the use of platelet lysate as a fetal bovine serum (FBS) replacement for skin cell culture. The cytokine content of the platelet lysate was characterized using the Bio-Plex system. The cells (fibroblasts, melanocytes, and keratinocytes) were cultured on PCL nanofibrous scaffolds to mimic their natural microenvironment. The cytokine content of the platelet lysate was determined, and to the cells, a medium containing platelet lysate or platelet lysate in combination with FBS was added. The results showed that 7% (v/v) platelet lysate was sufficient to supplement 10% (v/v) FBS in the culture of fibroblasts and keratinocytes. The combination of platelet lysate and FBS had a rather inhibitory effect on fibroblasts, in contrary to keratinocytes, where the effect was synergic. Platelet lysate did not sufficiently promote proliferation in melanocytes; however, the combination of FBS and platelet lysate yielded a better outcome and resulted in bipolar morphology of the cultured melanocytes. The data indicated that platelet lysate improved cell proliferation and metabolic activity and may be used as an additive to the cell culture media.


Subject(s)
Biomimetics/methods , Blood Platelets/metabolism , Nanofibers/chemistry , Cell Culture Techniques , Cell Differentiation , Humans
18.
Cell Prolif ; 50(4)2017 Aug.
Article in English | MEDLINE | ID: mdl-28714176

ABSTRACT

OBJECTIVES: Bioactive peptides derived from receptor binding motifs of native proteins are a potent source of bioactive molecules that can induce signalling pathways. These peptides could substitute for osteogenesis promoting supplements. The work presented here compares three kinds of bioactive peptides derived from collagen III, bone morphogenetic protein 7 (BMP-7) and BMP-2 with their potential osteogenic activity on the model of porcine mesenchymal stem cells (pMSCs). MATERIALS AND METHODS: pMSCs were cultured on electrospun polycaprolactone nanofibrous scaffolds with different concentrations of the bioactive peptides without addition of any osteogenic supplement. Analysis of pMSCs cultures included measurement of the metabolic activity and proliferation, immunofluorescence staining and also qPCR. RESULTS: Results showed no detrimental effect of the bioactive peptides to cultured pMSCs. Based on qPCR analysis, the bioactive peptides are specific for osteogenic differentiation with no detectable expression of collagen II. Our results further indicate that peptide derived from BMP-2 protein promoted the expression of mRNA for osteocalcin (OCN) and collagen I significantly compared to control groups and also supported deposition of OCN as observed by immunostaining method. CONCLUSION: The data suggest that bioactive peptide with an amino acid sequence of KIPKASSVPTELSAISTLYL derived from BMP-2 protein was the most potent for triggering osteogenic differentiation of pMSCs.


Subject(s)
Cell Differentiation/drug effects , Mesenchymal Stem Cells/cytology , Osteogenesis/drug effects , Peptides/pharmacology , Animals , Cell Culture Techniques , Cells, Cultured , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type II/genetics , Collagen Type II/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Microscopy, Confocal , Microscopy, Electron, Scanning , Osteocalcin/genetics , Osteocalcin/metabolism , Peptides/chemistry , Swine , Swine, Miniature
19.
Int J Nanomedicine ; 12: 347-361, 2017.
Article in English | MEDLINE | ID: mdl-28123295

ABSTRACT

Bone and cartilage are tissues of a three-dimensional (3D) nature. Therefore, scaffolds for their regeneration should support cell infiltration and growth in all 3 dimensions. To fulfill such a requirement, the materials should possess large, open pores. Centrifugal spinning is a simple method for producing 3D fibrous scaffolds with large and interconnected pores. However, the process of bone regeneration is rather complex and requires additional stimulation by active molecules. In the current study, we introduced a simple composite scaffold based on platelet adhesion to poly-ε-caprolactone 3D fibers. Platelets were used as a natural source of growth factors and cytokines active in the tissue repair process. By immobilization in the fibrous scaffolds, their bioavailability was prolonged. The biological evaluation of the proposed system in the MG-63 model showed improved metabolic activity, proliferation and alkaline phosphatase activity in comparison to nonfunctionalized fibrous scaffold. In addition, the response of cells was dose dependent with improved biocompatibility with increasing platelet concentration. The results demonstrated the suitability of the system for bone tissue.


Subject(s)
Blood Platelets/metabolism , Drug Delivery Systems/methods , Intercellular Signaling Peptides and Proteins/administration & dosage , Intercellular Signaling Peptides and Proteins/pharmacology , Polyesters/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Alkaline Phosphatase/metabolism , Animals , Blood Platelets/drug effects , Blood Platelets/ultrastructure , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Shape/drug effects , Humans , Kinetics , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/ultrastructure , Osteogenesis/drug effects , Platelet Adhesiveness/drug effects , Polyesters/pharmacology
20.
Int J Pharm ; 516(1-2): 293-300, 2017 Jan 10.
Article in English | MEDLINE | ID: mdl-27851978

ABSTRACT

Herein, we describe a simple spinneret setup for needleless coaxial electrospinning that exceeds the limited production capacity of current approaches. The proposed weir spinneret enables coaxial electrospinning from free liquid surface. This approach leads to the formation of coaxial nanofibers with higher and uniform shell/core ratio, which results in the possibility of better tuning of the degradation rate. The throughput and quality increase favor the broader application of coaxial nanofibers from weir spinnerets as systems for controlled drug delivery in regenerative medicine and tissue engineering.


Subject(s)
Drug Delivery Systems , Nanofibers , Technology, Pharmaceutical/methods , Delayed-Action Preparations , Humans , Regenerative Medicine/methods , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...