Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(6): 104837, 2023 06.
Article in English | MEDLINE | ID: mdl-37209824

ABSTRACT

Group I metabotropic glutamate receptors (mGluRs) play important roles in many neuronal processes and are believed to be involved in synaptic plasticity underlying the encoding of experience, including classic paradigms of learning and memory. These receptors have also been implicated in various neurodevelopmental disorders, such as Fragile X syndrome and autism. Internalization and recycling of these receptors in the neuron are important mechanisms to regulate the activity of the receptor and control the precise spatiotemporal localization of these receptors. Applying a "molecular replacement" approach in hippocampal neurons derived from mice, we demonstrate a critical role for protein interacting with C kinase 1 (PICK1) in regulating the agonist-induced internalization of mGluR1. We show that PICK1 specifically regulates the internalization of mGluR1, but it does not play any role in the internalization of the other member of group I mGluR family, mGluR5. Various regions of PICK1 viz., the N-terminal acidic motif, PDZ domain, and BAR domain play important roles in the agonist-mediated internalization of mGluR1. Finally, we demonstrate that PICK1-mediated internalization of mGluR1 is critical for the resensitization of the receptor. Upon knockdown of endogenous PICK1, mGluR1s stayed on the cell membrane as inactive receptors, incapable of triggering the MAP kinase signaling. They also could not induce AMPAR endocytosis, a cellular correlate for mGluR-dependent synaptic plasticity. Thus, this study unravels a novel role for PICK1 in the agonist-mediated internalization of mGluR1 and mGluR1-mediated AMPAR endocytosis that might contribute to the function of mGluR1 in neuropsychiatric disorders.


Subject(s)
Carrier Proteins , Receptors, AMPA , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Endocytosis/physiology , Neuronal Plasticity , Protein Transport/physiology , Receptors, AMPA/metabolism
2.
J Biol Chem ; 295(25): 8575-8588, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32376687

ABSTRACT

Group I metabotropic glutamate receptors (mGluRs) play important roles in various neuronal functions and have also been implicated in multiple neuropsychiatric disorders like fragile X syndrome, autism, and others. mGluR trafficking not only plays important roles in controlling the spatiotemporal localization of these receptors in the cell but also regulates the activity of these receptors. Despite this obvious significance, the cellular machineries that control the trafficking of group I metabotropic glutamate receptors in the central nervous system have not been studied in detail. The post-synaptic scaffolding protein tamalin has been shown to interact with group I mGluRs and also with many other proteins involved in protein trafficking in neurons. Using a molecular replacement approach in mouse hippocampal neurons, we show here that tamalin plays a critical role in the ligand-dependent internalization of mGluR1 and mGluR5, members of the group I mGluR family. Specifically, knockdown of endogenous tamalin inhibited the ligand-dependent internalization of these two receptors. Both N-terminal and C-terminal regions of tamalin played critical roles in mGluR1 endocytosis. Furthermore, we found that tamalin regulates mGluR1 internalization by interacting with S-SCAM, a protein that has been implicated in vesicular trafficking. Finally, we demonstrate that tamalin plays a critical role in mGluR-mediated internalization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, a process believed to be the cellular correlate for mGluR-dependent synaptic plasticity. Taken together, these findings reveal a mechanistic role of tamalin in the trafficking of group I mGluRs and suggest its physiological implications in the brain.


Subject(s)
Carrier Proteins/metabolism , Membrane Proteins/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, Metabotropic Glutamate/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Endocytosis , Guanylate Kinases/antagonists & inhibitors , Guanylate Kinases/genetics , Guanylate Kinases/metabolism , HEK293 Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Ligands , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Neuronal Plasticity , Protein Domains , RNA Interference , RNA, Small Interfering/metabolism , Receptor, Metabotropic Glutamate 5/genetics , Receptors, Metabotropic Glutamate/genetics
3.
Adv Exp Med Biol ; 1112: 163-175, 2018.
Article in English | MEDLINE | ID: mdl-30637697

ABSTRACT

Glutamate is a nonessential amino acid, known to act as a major excitatory neurotransmitter in the central nervous system. Glutamate transduces its signal by activating two types of receptors, viz., ionotropic glutamate receptors and metabotropic glutamate receptors (mGluRs). mGluR1 and mGluR5 are members of the group I mGluR family, and they belong to the G-protein-coupled receptor (GPCR) family. These receptors are involved in various forms of synaptic plasticity including learning and memory. Similar to many other GPCRs, trafficking plays a critical role in controlling the spatiotemporal localization of these receptors on the cell surface, which is critical for the normal ligand/receptor interaction. Improper targeting of GPCRs results in aberrant signaling, which often leads to various diseases. Trafficking also regulates the activity of these receptors. Thus, inappropriate trafficking of these receptors might have pathological consequences. Group I mGluRs have been implicated in various neuropsychiatric disorders like Fragile X syndrome, autism, etc. In this review, we discuss the current understanding of group I mGluR trafficking in the central nervous system and its physiological importance.


Subject(s)
Neuronal Plasticity , Protein Transport , Receptors, Metabotropic Glutamate/chemistry , Signal Transduction , Cell Membrane/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...