Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 16: 1232795, 2023.
Article in English | MEDLINE | ID: mdl-37602191

ABSTRACT

Postsynaptic neurotransmitter receptors and their associated scaffolding proteins assemble into discrete, nanometer-scale subsynaptic domains (SSDs) within the postsynaptic membrane at both excitatory and inhibitory synapses. Intriguingly, postsynaptic receptor SSDs are mirrored by closely apposed presynaptic active zones. These trans-synaptic molecular assemblies are thought to be important for efficient neurotransmission because they concentrate postsynaptic receptors near sites of presynaptic neurotransmitter release. While previous studies have characterized the role of synaptic activity in sculpting the number, size, and distribution of postsynaptic SSDs at established synapses, it remains unknown whether neurotransmitter signaling is required for their initial assembly during synapse development. Here, we evaluated synaptic nano-architecture under conditions where presynaptic neurotransmitter release was blocked prior to, and throughout synaptogenesis with tetanus neurotoxin (TeNT). In agreement with previous work, neurotransmitter release was not required for the formation of excitatory or inhibitory synapses. The overall size of the postsynaptic specialization at both excitatory and inhibitory synapses was reduced at chronically silenced synapses. However, both AMPARs and GABAARs still coalesced into SSDs, along with their respective scaffold proteins. Presynaptic active zone assemblies, defined by RIM1, were smaller and more numerous at silenced synapses, but maintained alignment with postsynaptic AMPAR SSDs. Thus, basic features of synaptic nano-architecture, including assembly of receptors and scaffolds into trans-synaptically aligned structures, are intrinsic properties that can be further regulated by subsequent activity-dependent mechanisms.

2.
Cell Rep ; 37(6): 109970, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34758298

ABSTRACT

Impaired synaptic neurotransmission may underly circuit alterations contributing to behavioral autism spectrum disorder (ASD) phenotypes. A critical component of impairments reported in somatosensory and prefrontal cortex of ASD mouse models are parvalbumin (PV)-expressing fast-spiking interneurons. However, it remains unknown whether PV interneurons mediating hippocampal networks crucial to navigation and memory processing are similarly impaired. Using PV-labeled transgenic mice, a battery of behavioral assays, in vitro patch-clamp electrophysiology, and in vivo 32-channel silicon probe local field potential recordings, we address this question in a Cntnap2-null mutant mouse model representing a human ASD risk factor gene. Cntnap2-/- mice show a reduction in hippocampal PV interneuron density, reduced inhibitory input to CA1 pyramidal cells, deficits in spatial discrimination ability, and frequency-dependent circuit changes within the hippocampus, including alterations in gamma oscillations, sharp-wave ripples, and theta-gamma modulation. Our findings highlight hippocampal involvement in ASD and implicate interneurons as a potential therapeutical target.


Subject(s)
Autism Spectrum Disorder/pathology , Gamma Rhythm , Hippocampus/pathology , Interneurons/pathology , Membrane Proteins/physiology , Nerve Tissue Proteins/physiology , Pyramidal Cells/pathology , Synaptic Transmission , Action Potentials , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Disease Models, Animal , Hippocampus/metabolism , Interneurons/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Pyramidal Cells/metabolism , Spatial Behavior
3.
eNeuro ; 8(6)2021.
Article in English | MEDLINE | ID: mdl-34789478

ABSTRACT

Secreted amyloid-ß (Aß) peptide forms neurotoxic oligomeric assemblies thought to cause synaptic deficits associated with Alzheimer's disease (AD). Soluble Aß oligomers (Aßo) directly bind to neurons with high affinity and block plasticity mechanisms related to learning and memory, trigger loss of excitatory synapses and eventually cause cell death. While Aßo toxicity has been intensely investigated, it remains unclear precisely where Aßo initially binds to the surface of neurons and whether sites of binding relate to synaptic deficits. Here, we used a combination of live cell, super-resolution and ultrastructural imaging techniques to investigate the kinetics, reversibility and nanoscale location of Aßo binding. Surprisingly, Aßo does not bind directly at the synaptic cleft as previously thought but, instead, forms distinct nanoscale clusters encircling the postsynaptic membrane with a significant fraction also binding presynaptic axon terminals. Synaptic plasticity deficits were observed at Aßo-bound synapses but not closely neighboring Aßo-free synapses. Thus, perisynaptic Aßo binding triggers spatially restricted signaling mechanisms to disrupt synaptic function. These data provide new insight into the earliest steps of Aßo pathology and lay the groundwork for future studies evaluating potential surface receptor(s) and local signaling mechanisms responsible for Aßo binding and synapse dysfunction.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Neuronal Plasticity , Neurons , Synapses
4.
J Neurosci ; 41(14): 3105-3119, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33637558

ABSTRACT

Interneurons contribute to the complexity of neural circuits and maintenance of normal brain function. Rodent interneurons originate in embryonic ganglionic eminences, but developmental origins in other species are less understood. Here, we show that transcription factor expression patterns in porcine embryonic subpallium are similar to rodents, delineating a distinct medial ganglionic eminence (MGE) progenitor domain. On the basis of Nkx2.1, Lhx6, and Dlx2 expression, in vitro differentiation into neurons expressing GABA, and robust migratory capacity in explant assays, we propose that cortical and hippocampal interneurons originate from a porcine MGE region. Following xenotransplantation into adult male and female rat hippocampus, we further demonstrate that porcine MGE progenitors, like those from rodents, migrate and differentiate into morphologically distinct interneurons expressing GABA. Our findings reveal that basic rules for interneuron development are conserved across species, and that porcine embryonic MGE progenitors could serve as a valuable source for interneuron-based xenotransplantation therapies.SIGNIFICANCE STATEMENT Here we demonstrate that porcine medial ganglionic eminence, like rodents, exhibit a distinct transcriptional and interneuron-specific antibody profile, in vitro migratory capacity and are amenable to xenotransplantation. This is the first comprehensive examination of embryonic interneuron origins in the pig; and because a rich neurodevelopmental literature on embryonic mouse medial ganglionic eminence exists (with some additional characterizations in other species, e.g., monkey and human), our work allows direct neurodevelopmental comparisons with this literature.


Subject(s)
Ganglia/embryology , Ganglia/transplantation , Interneurons/transplantation , Median Eminence/embryology , Median Eminence/transplantation , Transplantation, Heterologous/methods , Animals , Female , Ganglia/cytology , Male , Median Eminence/cytology , Rats , Rats, Sprague-Dawley , Swine , Tissue Culture Techniques/methods
5.
Sci Transl Med ; 11(521)2019 12 04.
Article in English | MEDLINE | ID: mdl-31801886

ABSTRACT

Aging involves a decline in neural function that contributes to cognitive impairment and disease. However, the mechanisms underlying the transition from a young-and-healthy to aged-and-dysfunctional brain are not well understood. Here, we report breakdown of the vascular blood-brain barrier (BBB) in aging humans and rodents, which begins as early as middle age and progresses to the end of the life span. Gain-of-function and loss-of-function manipulations show that this BBB dysfunction triggers hyperactivation of transforming growth factor-ß (TGFß) signaling in astrocytes, which is necessary and sufficient to cause neural dysfunction and age-related pathology in rodents. Specifically, infusion of the serum protein albumin into the young rodent brain (mimicking BBB leakiness) induced astrocytic TGFß signaling and an aged brain phenotype including aberrant electrocorticographic activity, vulnerability to seizures, and cognitive impairment. Furthermore, conditional genetic knockdown of astrocytic TGFß receptors or pharmacological inhibition of TGFß signaling reversed these symptomatic outcomes in aged mice. Last, we found that this same signaling pathway is activated in aging human subjects with BBB dysfunction. Our study identifies dysfunction in the neurovascular unit as one of the earliest triggers of neurological aging and demonstrates that the aging brain may retain considerable latent capacity, which can be revitalized by therapeutic inhibition of TGFß signaling.


Subject(s)
Aging/pathology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Signal Transduction , Transforming Growth Factor beta/metabolism , Adult , Aged , Aged, 80 and over , Albumins/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Blood-Brain Barrier/drug effects , Chronic Disease , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Gene Knockdown Techniques , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/physiopathology , Humans , Mice, Transgenic , Middle Aged , Protein Kinase Inhibitors/pharmacology , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...