Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Drug Policy ; 97: 103409, 2021 11.
Article in English | MEDLINE | ID: mdl-34392112

ABSTRACT

BACKGROUND: There has been a recent increase in adulteration of opioids with low concentration actives such as fentanyl analogues and benzodiazepines. As drug checking projects using vibrational spectroscopy continue to seek confirmatory lab-based testing, the concern and reality of missing these potentially harmful substances in point-of-care testing is prevalent. METHODS: A portable GC-MS was used to analyze select opioid samples acquired at a drug checking service in Victoria, Canada (n=59). Certified reference standards of several fentanyl analogues and benzodiazepines were measured to guide targeted analysis of these samples. Results were compared with those obtained using a lab-based paper spray mass spectrometer. RESULTS: Portable GC-MS was able to identify 62% of samples containing carfentanil and 36% of samples containing etizolam. In the case of etizolam, the success rate was higher for more potent samples: 78% of etizolam-containing samples were identified when the etizolam concentration was above 3% by weight. In comparison, infrared spectroscopy was able to detect etizolam in only 9% of the etizolam-containing samples, and is not sensitive enough to detect carfentanil at relevant concentrations. CONCLUSIONS: Portable GC-MS has potential in identifying low concentration substances in a point-of-care setting, without relying on subsequent off-site confirmatory testing.


Subject(s)
Analgesics, Opioid , Pharmaceutical Preparations , Analgesics, Opioid/analysis , Diazepam/analogs & derivatives , Fentanyl/analogs & derivatives , Gas Chromatography-Mass Spectrometry , Humans
2.
Drug Test Anal ; 13(4): 734-746, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33646611

ABSTRACT

The illicit drug overdose crisis in North America continues to devastate communities with fentanyl detected in the majority of illicit drug overdose deaths. The COVID-19 pandemic has heightened concerns of even greater unpredictability in the drug supplies and unprecedented rates of overdoses. Portable drug-checking technologies are increasingly being integrated within overdose prevention strategies. These emerging responses are raising new questions about which technologies to pursue and what service models can respond to the current risks and contexts. In what has been referred to as the epicenter of the overdose crisis in Canada, a multi-technology platform for drug checking is being piloted in community settings using a suite of chemical analytical methods to provide real-time harm reduction. These include infrared absorption, Raman scattering, gas chromatography with mass spectrometry, and antibody-based test strips. In this Perspective, we illustrate some advantages and challenges of using multiple techniques for the analysis of the same sample, and provide an example of a data analysis and visualization platform that can unify the presentation of the results and enable deeper analysis of the results. We also highlight the implementation of a various service models that co-exist in a research setting, with particular emphasis on the way that drug checking technicians and harm reduction workers interact with service users. Finally, we provide a description of the challenges associated with data interpretation and the communication of results to a diverse audience.


Subject(s)
Drug Overdose/diagnosis , Illicit Drugs/analysis , Substance Abuse Detection/methods , COVID-19/epidemiology , Drug Overdose/epidemiology , Gas Chromatography-Mass Spectrometry/instrumentation , Gas Chromatography-Mass Spectrometry/methods , Humans , Pilot Projects , Point-of-Care Testing , Reagent Strips/analysis , Spectrophotometry, Infrared/instrumentation , Spectrophotometry, Infrared/methods , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/methods , Substance Abuse Detection/instrumentation
3.
J Phys Chem A ; 124(9): 1841-1849, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32037816

ABSTRACT

We outline a method by which the surface preference of a species in a multicomponent mixture may be obtained using surface-specific visible-infrared sum frequency generation (SFG) spectroscopy combined with bulk infrared absorption and/or Raman data. In general, the problem is complicated by the fact that the SFG signal is a function of both the surface coverage and the structure of the molecules. Two-dimensional correlation analysis can be used to reveal which spectral features are changing synchronously, that is, in phase with each other, and which ones are evolving in a manner that is phase-shifted by 90° (asynchronous correlation) as a function of the bulk composition. We provide a framework for determining the surface preference from the correlations between the vibrational modes in the SFG spectra and between the modes from SFG and bulk infrared and/or Raman spectra. When compared to the equivalent analysis performed using the SFG spectra alone, this method can be used with the data obtained using a single-beam polarization and in congested spectral regions where fitting to isolate the behavior of individual vibrational modes is not robust.

4.
J Chem Phys ; 150(1): 014702, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30621417

ABSTRACT

Polymer coatings offer a means to modulate the adsorption of molecules onto solid surfaces by offering a surface functionality, charge, roughness, and hydrophobicity that is different from the underlying substrate. One application is to provide anti-fouling functions for metal surfaces. Understanding solvent-surface interactions is an essential component to gaining mechanistic insight into the adsorption process. In this work, we study the adsorption of toluene-heptane binary mixtures onto a perflurorinated polymer surface. We use a combination of IR absorption and Raman scattering spectroscopy to study the mixture in the bulk phase, and surface-specific visible-infrared sum-frequency generation to probe the surface layers. Through the use of homo- and heterospectral two-dimensional correlation spectroscopy, we conclude that the adsorption of the two solvents is reversible and that the surface structure is generally independent of the surface composition, with a small change in toluene orientation as the toluene content increases. We also find that the hydrophobic fluropolymer has very little preference for either solvent, similar to previous studies on hydrophilic surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...