ABSTRACT
Abstract Ecologically-sound management plans for high-altitude grasslands of the Andes depend on an understanding the responses of plants to fire, especially the dominant tussock grasses. This study considers physiognomic responses of tussock grass in 13 sites in northern Ecuador with a known fire history, with time since fire 0.5-10 y, and a control site which had not been burned for at least 40 y. At each site, we assessed vegetation height, basal cover of the tussocks, and the ratio of dead:live leaves in tussocks. We also measured light at ground level. As recovery time increased, tussock cover and number decreased, while tussock height increased. Light levels fell sharply below the tussock canopies as recovery took place, and dead leaves accumulated quickly, reaching 60 - 70% by just two years after fire. The modification of physical tussock structure is likely to influence a much wider ecosystem response to fire, and determines directly the fuel load for future fires. Despite these clear changes in tussock characteristics, they were too variable to be used as a reliable bioindicator of time since fire. However, a better understanding of the responses of tussock grasses to fire and particularly its impact on other species should become the focus of further attention in future.
Resumen Los planes de manejo ecológicamente sólidos para los pastizales de gran altura en los Andes dependen del entendimiento de las respuestas de las plantas al fuego, en especial las respuestas de los pastos dominantes. Este estudio considera las respuestas fisionómicas de pastos en 13 sitios en el norte del Ecuador con un historial de incendios conocido, con tiempo entre 0.5 y 10 años después del incendio, más un sitio control donde al menos durante 40 años no se había producido incendio. En cada sitio, evaluamos la altura de la vegetación, la cobertura basal de las macollas y la proporción de hojas muertas:vivas en las macollas. También, medimos la luz a nivel del suelo. A medida que aumentó el tiempo de recuperación, la cobertura y el número de macollas disminuyeron, mientras que la altura de las macollas aumentó. Los niveles de luz cayeron fuertemente debajo de las copas de las macollas durante la recuperación, y las hojas muertas se acumularon rápidamente, alcanzando 60 - 70% solo dos años después del incendio. Es probable que las modificaciones en la estructura física de las macollas influyen en una respuesta mucho más amplia del ecosistema al fuego, y determinen directamente la carga de combustible para futuros incendios. A pesar de que se observaron cambios claros en las características de las macollas, estas eran demasiado variables para ser consideradas como un bioindicador confiable del tiempo transcurrido después del incendio. Sin embargo, una mejor comprensión de las respuestas de las macollas al fuego y, en particular, el impacto de esas respuestas en otras especies debería ser el enfoque de mayor atención en el futuro.
ABSTRACT
PREMISE OF THE STUDY: Biological responses to climatic change usually leave imprints on the genetic diversity and structure of plants. Information on the current genetic diversity and structure of dominant tree species has facilitated our general understanding of phylogeographical patterns. METHODS: Using amplified fragment length polymorphism (AFLPs), we compared genetic diversity and structure of 384 adults of P. tarapacana with those of 384 seedlings across 32 forest sites spanning a latitudinal gradient of 600 km occurring between 4100 m and 5000 m a.s.l. in Polylepis tarapacana (Rosaceae), one of the world's highest treeline species endemic to the central Andes. KEY RESULTS: Moderate to high levels of genetic diversity and low genetic differentiation were detected in both adults and seedlings, with levels of genetic diversity and differentiation being almost identical. Four slightly genetically divergent clusters were identified that accorded to differing geographical regions. Genetic diversity decreased from south to north and with increasing precipitation for adults and seedlings, but there was no relationship to elevation. CONCLUSIONS: Our study shows that, unlike the case for other Andean treeline species, recent human activities have not affected the genetic structure of P. tarapacana, possibly because its inhospitable habitat is unsuitable for agriculture. The current genetic pattern of P. tarapacana points to a historically more widespread distribution at lower altitudes, which allowed considerable gene flow possibly during the glacial periods of the Pleistocene epoch, and also suggests that the northern Argentinean Andes may have served as a refugium for historical populations.