Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 23(7): 2518-2531, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38810119

ABSTRACT

Phosphorylation is the most studied post-translational modification, and has multiple biological functions. In this study, we have reanalyzed publicly available mass spectrometry proteomics data sets enriched for phosphopeptides from Asian rice (Oryza sativa). In total we identified 15,565 phosphosites on serine, threonine, and tyrosine residues on rice proteins. We identified sequence motifs for phosphosites, and link motifs to enrichment of different biological processes, indicating different downstream regulation likely caused by different kinase groups. We cross-referenced phosphosites against the rice 3,000 genomes, to identify single amino acid variations (SAAVs) within or proximal to phosphosites that could cause loss of a site in a given rice variety and clustered the data to identify groups of sites with similar patterns across rice family groups. The data has been loaded into UniProt Knowledge-Base─enabling researchers to visualize sites alongside other data on rice proteins, e.g., structural models from AlphaFold2, PeptideAtlas, and the PRIDE database─enabling visualization of source evidence, including scores and supporting mass spectra.


Subject(s)
Genome, Plant , Oryza , Phosphoproteins , Plant Proteins , Proteomics , Signal Transduction , Oryza/genetics , Oryza/metabolism , Oryza/chemistry , Proteomics/methods , Phosphoproteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/chemistry , Phosphoproteins/analysis , Plant Proteins/genetics , Plant Proteins/metabolism , Phosphorylation , Protein Processing, Post-Translational , Phosphopeptides/metabolism , Phosphopeptides/analysis , Databases, Protein , Amino Acid Motifs , Mass Spectrometry
2.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014076

ABSTRACT

Phosphorylation is the most studied post-translational modification, and has multiple biological functions. In this study, we have re-analysed publicly available mass spectrometry proteomics datasets enriched for phosphopeptides from Asian rice (Oryza sativa). In total we identified 15,522 phosphosites on serine, threonine and tyrosine residues on rice proteins. We identified sequence motifs for phosphosites, and link motifs to enrichment of different biological processes, indicating different downstream regulation likely caused by different kinase groups. We cross-referenced phosphosites against the rice 3,000 genomes, to identify single amino acid variations (SAAVs) within or proximal to phosphosites that could cause loss of a site in a given rice variety. The data was clustered to identify groups of sites with similar patterns across rice family groups, for example those highly conserved in Japonica, but mostly absent in Aus type rice varieties - known to have different responses to drought. These resources can assist rice researchers to discover alleles with significantly different functional effects across rice varieties. The data has been loaded into UniProt Knowledge-Base - enabling researchers to visualise sites alongside other data on rice proteins e.g. structural models from AlphaFold2, PeptideAtlas and the PRIDE database - enabling visualisation of source evidence, including scores and supporting mass spectra.

3.
Stem Cells ; 41(11): 1047-1059, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37591507

ABSTRACT

Variation in mesenchymal stromal cell (MSC) function depending on their origin is problematic, as it may confound clinical outcomes of MSC therapy. Current evidence suggests that the therapeutic benefits of MSCs are attributed to secretion of biologically active factors (secretome). However, the effect of donor characteristics on the MSC secretome remains largely unknown. Here, we examined the influence of donor age, sex, and tissue source, on the protein profile of the equine MSC secretome. We used dynamic metabolic labeling with stable isotopes combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify secreted proteins in MSC conditioned media (CM). Seventy proteins were classified as classically secreted based on the rate of label incorporation into newly synthesized proteins released into the extracellular space. Next, we analyzed CM of bone marrow- (n = 14) and adipose-derived MSCs (n = 16) with label-free LC-MS/MS. Clustering analysis of 314 proteins detected across all samples identified tissue source as the main factor driving variability in MSC CM proteomes. Linear modelling applied to the subset of 70 secreted proteins identified tissue-related difference in the abundance of 23 proteins. There was an age-related decrease in the abundance of CTHRC1 and LOX, further validated with orthogonal techniques. Due to the lack of flow cytometry characterization of MSC surface markers, the analysis could not account for the potential effect of cell population heterogeneity. This study provides evidence that tissue source and donor age contribute to differences in the protein composition of MSC secretomes which may influence the effects of MSC therapy.


Subject(s)
Mesenchymal Stem Cells , Secretome , Animals , Horses , Tandem Mass Spectrometry , Chromatography, Liquid , Bone Marrow/metabolism , Mesenchymal Stem Cells/metabolism , Culture Media, Conditioned/pharmacology
4.
J Proteome Res ; 22(6): 1828-1842, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37099386

ABSTRACT

Phosphorylation is a post-translational modification of great interest to researchers due to its relevance in many biological processes. LC-MS/MS techniques have enabled high-throughput data acquisition, with studies claiming identification and localization of thousands of phosphosites. The identification and localization of phosphosites emerge from different analytical pipelines and scoring algorithms, with uncertainty embedded throughout the pipeline. For many pipelines and algorithms, arbitrary thresholding is used, but little is known about the actual global false localization rate in these studies. Recently, it has been suggested to use decoy amino acids to estimate global false localization rates of phosphosites, among the peptide-spectrum matches reported. Here, we describe a simple pipeline aiming to maximize the information extracted from these studies by objectively collapsing from peptide-spectrum match to the peptidoform-site level, as well as combining findings from multiple studies while maintaining track of false localization rates. We show that the approach is more effective than current processes that use a simpler mechanism for handling phosphosite identification redundancy within and across studies. In our case study using eight rice phosphoproteomics data sets, 6368 unique sites were confidently identified using our decoy approach compared to 4687 using traditional thresholding in which false localization rates are unknown.


Subject(s)
Proteomics , Rivers , Chromatography, Liquid , Proteomics/methods , Tandem Mass Spectrometry , Protein Processing, Post-Translational , Peptides/chemistry , Algorithms , Databases, Protein
5.
J Proteome Res ; 21(7): 1603-1615, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35640880

ABSTRACT

Phosphoproteomic methods are commonly employed to identify and quantify phosphorylation sites on proteins. In recent years, various tools have been developed, incorporating scores or statistics related to whether a given phosphosite has been correctly identified or to estimate the global false localization rate (FLR) within a given data set for all sites reported. These scores have generally been calibrated using synthetic datasets, and their statistical reliability on real datasets is largely unknown, potentially leading to studies reporting incorrectly localized phosphosites, due to inadequate statistical control. In this work, we develop the concept of scoring modifications on a decoy amino acid, that is, one that cannot be modified, to allow for independent estimation of global FLR. We test a variety of amino acids, on both synthetic and real data sets, demonstrating that the selection can make a substantial difference to the estimated global FLR. We conclude that while several different amino acids might be appropriate, the most reliable FLR results were achieved using alanine and leucine as decoys. We propose the use of a decoy amino acid to control false reporting in the literature and in public databases that re-distribute the data. Data are available via ProteomeXchange with identifier PXD028840.


Subject(s)
Amino Acids , Tandem Mass Spectrometry , Databases, Protein , Reproducibility of Results , Tandem Mass Spectrometry/methods
6.
Int J Mol Sci ; 22(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073890

ABSTRACT

The breast cancer resistance protein (BCRP) is an important efflux transporter in the blood-brain barrier (BBB), protecting the brain from a wide range of substances. In this study, we investigated if BCRP function is affected by bisphenol A (BPA), a high production volume chemical used in common consumer products, as well as by bisphenol F (BPF) and bisphenol S (BPS), which are used to substitute BPA. We employed a transwell-based in vitro cell model of iPSC-derived brain microvascular endothelial cells, where BCRP function was assessed by measuring the intracellular accumulation of its substrate Hoechst 33342. Additionally, we used in silico modelling to predict if the bisphenols could directly interact with BCRP. Our results showed that BPA significantly inhibits the transport function of BCRP. Additionally, BPA was predicted to bind to the cavity that is targeted by known BCRP inhibitors. Taken together, our findings demonstrate that BPA inhibits BCRP function in vitro, probably by direct interaction with the transporter. This effect might contribute to BPA's known impact on neurodevelopment.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Benzhydryl Compounds/pharmacology , Blood-Brain Barrier/metabolism , Endothelial Cells/drug effects , Neoplasm Proteins/metabolism , Phenols/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/toxicity , Benzimidazoles/metabolism , Cell Culture Techniques , Cells, Cultured , Diketopiperazines/chemistry , Diketopiperazines/pharmacology , Gene Expression , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , In Vitro Techniques , Induced Pluripotent Stem Cells/metabolism , Molecular Docking Simulation , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Phenols/chemistry , Phenols/toxicity , Protein Binding , Sulfones/chemistry , Sulfones/pharmacology , Sulfones/toxicity
7.
PLoS One ; 15(2): e0220754, 2020.
Article in English | MEDLINE | ID: mdl-32027661

ABSTRACT

INTRODUCTION: Adverse drug reactions have been linked with HLA alleles in different studies. These HLA proteins play an essential role in the adaptive immune response for the presentation of self and non-self peptides. Anti-thyroid drugs methimazole and propylthiouracil have been associated with drug induced agranulocytosis (severe lower white blood cell count) in patients with B*27:05, B*38:02 and DRB1*08:03 alleles in different populations: Taiwanese, Vietnamese, Han Chinese and Caucasian. METHODS: In this study, informatics methods were used to investigate if any sequence or structural similarities exist between the two associated HLA-B alleles, compared with a set of "control" alleles assumed not be associated, which could help explain the molecular basis of the adverse drug reaction. We demonstrated using MHC Motif Viewer and MHCcluster that the two alleles do not have a propensity to bind similar peptides, and thus at a gross level the structure of the antigen presentation region of the two alleles are not similar. We also performed multiple sequence alignment to identify polymorphisms shared by the risk but not by the control alleles and molecular docking to compare the predicted binding poses of the drug-allele combinations. RESULTS: Two residues, Cys67 and Thr80, were identified from the multiple sequence alignments to be unique to these risk alleles alone. The molecular docking showed the poses of the risk alleles to favour the F-pocket of the peptide binding groove, close to the Thr80 residue, with the control alleles generally favouring a different pocket. The data are thus suggestive that Thr80 may be a critical residue in HLA-mediated anti-thyroid drug induced agranulocytosis, and thus can guide future research and risk assessment.


Subject(s)
Agranulocytosis/chemically induced , Alleles , Antithyroid Agents/adverse effects , Drug-Related Side Effects and Adverse Reactions , HLA-B Antigens/genetics , Medical Informatics/methods , Adaptive Immunity , Agranulocytosis/ethnology , Amino Acid Sequence , Asian People , Binding Sites , Drug-Related Side Effects and Adverse Reactions/ethnology , Drug-Related Side Effects and Adverse Reactions/genetics , Genetic Predisposition to Disease , Humans , Methimazole/adverse effects , Propylthiouracil/adverse effects , Protein Binding , White People
8.
Mol Immunol ; 101: 488-499, 2018 09.
Article in English | MEDLINE | ID: mdl-30125869

ABSTRACT

Adverse drug reactions have been linked with genetic polymorphisms in HLA genes in numerous different studies. HLA proteins have an essential role in the presentation of self and non-self peptides, as part of the adaptive immune response. Amongst the associated drugs-allele combinations, anti-HIV drug Abacavir has been shown to be associated with the HLA-B*57:01 allele, and anti-epilepsy drug Carbamazepine with B*15:02, in both cases likely following the altered peptide repertoire model of interaction. Under this model, the drug binds directly to the antigen presentation region, causing different self peptides to be presented, which trigger an unwanted immune response. There is growing interest in searching for evidence supporting this model for other ADRs using bioinformatics techniques. In this study, in silico docking was used to assess the utility and reliability of well-known docking programs when addressing these challenging HLA-drug situations. The overall aim was to address the uncertainty of docking programs giving different results by completing a detailed comparative study of docking software, grounded in the MHC-ligand experimental structural data - for Abacavir and to a lesser extent Carbamazepine - in order to assess their performance. Four docking programs: SwissDock, ROSIE, AutoDock Vina and AutoDockFR, were used to investigate if each software could accurately dock the Abacavir back into the crystal structure for the protein arising from the known risk allele, and if they were able to distinguish between the HLA-associated and non-HLA-associated (control) alleles. The impact of using homology models on the docking performance and how using different parameters, such as including receptor flexibility, affected the docking performance were also investigated to simulate the approach where a crystal structure for a given HLA allele may be unavailable. The programs that were best able to predict the binding position of Abacavir were then used to recreate the docking seen for Carbamazepine with B*15:02 and controls alleles. It was found that the programs investigated were sometimes able to correctly predict the binding mode of Abacavir with B*57:01 but not always. Each of the software packages that were assessed could predict the binding of Abacavir and Carbamazepine within the correct sub-pocket and, with the exception of ROSIE, was able to correctly distinguish between risk and control alleles. We found that docking to homology models could produce poorer quality predictions, especially when sequence differences impact the architecture of predicted binding pockets. Caution must therefore be used as inaccurate structures may lead to erroneous docking predictions. Incorporating receptor flexibility was found to negatively affect the docking performance for the examples investigated. Taken together, our findings help characterise the potential but also the limitations of computational prediction of drug-HLA interactions. These docking techniques should therefore always be used with care and alongside other methods of investigation, in order to be able to draw strong conclusions from the given results.


Subject(s)
Alleles , Drug-Related Side Effects and Adverse Reactions/genetics , HLA Antigens/chemistry , HLA Antigens/genetics , Molecular Docking Simulation , Carbamazepine/adverse effects , Carbamazepine/chemistry , Dideoxynucleosides/adverse effects , Dideoxynucleosides/chemistry , Humans , Peptides/chemistry , Risk Factors , Software , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...