Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 211(Pt 13): 2134-43, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18552303

ABSTRACT

The role of exogenous thyroid hormone on visual pigment content of rod and cone photoreceptors was investigated in coho salmon (Oncorhynchus kisutch). Coho vary the ratio of vitamin A1- and A2-based visual pigments in their eyes. This variability potentially alters spectral sensitivity and thermal stability of the visual pigments. We tested whether the direction of shift in the vitamin A1/A2 ratio, resulting from application of exogenous thyroid hormone, varied in fish of different ages and held under different environmental conditions. Changes in the vitamin A1/A2 visual pigment ratio were estimated by measuring the change in maximum absorbance (lambda max) of rods using microspectrophotometry (MSP). Exogenous thyroid hormone resulted in a long-wavelength shift in rod, middle-wavelength-sensitive (MWS) and long-wavelength-sensitive (LWS) cone photoreceptors. Rod and LWS cone lambda max values increased, consistent with an increase in vitamin A2. MWS cone lambda max values increased more than predicted for a change in the vitamin A1/A2 ratio. To account for this shift, we tested for the expression of multiple RH2 opsin subtypes. We isolated and sequenced a novel RH2 opsin subtype, which had 48 amino acid differences from the previously sequenced coho RH2 opsin. A substitution of glutamate for glutamine at position 122 could partially account for the greater than predicted shift in MWS cone lambda max values. Our findings fit the hypothesis that a variable vitamin A1/A2 ratio provides seasonality in spectral tuning and/or improved thermal stability of visual pigments in the face of seasonal environmental changes, and that multiple RH2 opsin subtypes can provide flexibility in spectral tuning associated with migration-metamorphic events.


Subject(s)
Oncorhynchus kisutch/metabolism , Retinal Pigments/metabolism , Thyroid Hormones/pharmacology , Amino Acid Sequence , Animals , Base Sequence , DNA Primers/genetics , Metamorphosis, Biological , Molecular Sequence Data , Oncorhynchus kisutch/genetics , Oncorhynchus kisutch/growth & development , Retinal Cone Photoreceptor Cells/drug effects , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/drug effects , Retinal Rod Photoreceptor Cells/metabolism , Rod Opsins/genetics , Rod Opsins/metabolism , Seasons , Sequence Homology, Amino Acid , Spectrophotometry , Thyroxine/pharmacology , Triiodothyronine/pharmacology , Vitamin A/analogs & derivatives , Vitamin A/metabolism
2.
J Exp Biol ; 211(Pt 9): 1376-85, 2008 May.
Article in English | MEDLINE | ID: mdl-18424671

ABSTRACT

A number of teleost fishes have photoreceptor mechanisms to detect linearly polarized light. We studied the neuronal mechanism underlying this ability. It was found that a polarized signal could be detected in rainbow trout (Oncorhynchus mykiss) both in the electroretinogram (ERG) and in the compound action potential (CAP) measured in the optic nerve, indicating a strong retinal contribution to the processing of polarized light. The CAP recordings showed a W-shaped sensitivity curve, with a peak at 0 degrees , 90 degrees and 180 degrees , consistent with processes for both vertical and horizontal orientation. By contrast, the ERG recordings reveal a more complex pattern. In addition to the peaks at 0 degrees , 90 degrees and 180 degrees , two additional peaks appeared at 45 degrees and 135 degrees . This result suggests a specialized contribution of the outer retina in the processing of polarized light. The spectral sensitivity of the mechanisms responsible for these intermediate peaks was studied using chromatic adaptation. Here we show that long wavelength-sensitive (LWS) cone mechanism adaptation shifted the intermediate peaks towards 90 degrees , whereas ultraviolet-sensitive (UVS) cone mechanism adaptation shifted the peaks away from 90 degrees towards either 0 degrees or 180 degrees . These results provide further confirmation that the 90 degrees peak is dominated by the LWS cone mechanism and the 0 degrees and 180 degrees peaks are dominated by the UVS cone mechanism. In addition, a pharmacological approach was used to examine the retinal neural mechanisms underlying polarization sensitivity. The effect of blocking negative feedback from horizontal cells to cones on the ERG was studied by making intraocular injections of low doses of cobalt, known to block this feedback pathway. It was found that the intermediate peaks seen in the ERG polarization sensitivity curves were eliminated after application of cobalt, suggesting that these peaks are due to outer retinal inhibition derived from feedback of horizontal cells onto cones. A simple computational model was developed to evaluate these results. The model consists of opponent and non-opponent processing elements for the two polarization detectors. This model provides a first approximation analysis suggesting that opponent processing occurs in the outer retina for polarization vision. Although it seems that polarization vision uses a slightly more complicated coding scheme than colour vision, the results presented in this paper suggest that opponent and non-opponent channels process polarization information.


Subject(s)
Oncorhynchus mykiss/physiology , Optic Nerve/physiology , Retina/physiology , Ultraviolet Rays , Vision, Ocular/physiology , Action Potentials/physiology , Animals , Electroretinography , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...