Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Surg ; 8: 639661, 2021.
Article in English | MEDLINE | ID: mdl-33834037

ABSTRACT

Preventing surgical flaps necrosis remains challenging. Laser Doppler imaging and ultrasound can monitor blood flow in flap regions, but they do not directly measure the cellular response to ischemia. The study aimed to investigate the efficacy of synergistic in-vivo electroporation-mediated gene transfer of interleukin 10 (IL-10) with either hepatocyte growth factor (HGF) or vascular endothelial growth factor (VEGF) on the survival of a modified McFarlane flap, and to evaluate the effect of the treatment on cell metabolism, using label-free fluorescence lifetime imaging. Fifteen male Wistar rats (290-320 g) were randomly divided in three groups: group-A (control group) underwent surgery and received no gene transfer. Group-B received electroporation mediated hIL-10 gene delivery 24 h before and VEGF gene delivery 24 h after surgery. Group-C received electroporation mediated hIL-10 gene delivery 24 h before and hHGF gene delivery 24 h after surgery. The animals were assessed clinically and histologically. In addition, label-free fluorescence lifetime imaging was performed on the flap. Synergistic electroporation mediated gene delivery significantly decreased flap necrosis (P = 0.0079) and increased mean vessel density (P = 0.0079) in treatment groups B and C compared to control group-A. NADH fluorescence lifetime analysis indicated an increase in oxidative phosphorylation in the epidermis of the group-B (P = 0.039) relative to controls. These findings suggested synergistic in-vivo electroporation-mediated gene transfer as a promising therapeutic approach to enhance viability and vascularity of skin flap. Furthermore, the study showed that combinational gene therapy promoted an increase in tissue perfusion and a relative increase in oxidative metabolism within the epithelium.

2.
Adv Wound Care (New Rochelle) ; 9(3): 90-102, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31993251

ABSTRACT

Objective: The elderly are at high risk for developing chronic skin wounds, but the effects of intrinsic aging on skin healing are difficult to isolate due to common comorbidities like diabetes. Our objective is to use multiphoton microscopy (MPM) to find endogenous, noninvasive biomarkers to differentiate changes in skin wound healing metabolism between young and aged mice in vivo. Approach: We utilized MPM to monitor skin metabolism at the edge of full-thickness, excisional wounds in 24- and 4-month-old mice of both sexes for 10 days. MPM can assess quantitative biomarkers of cellular metabolism in vivo by utilizing autofluorescence from the cofactors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD). Results: An optical redox ratio of FAD/(NADH+FAD) autofluorescence and NADH fluorescence lifetime imaging revealed dynamic changes in keratinocyte function during healing. Aged female mice demonstrated an attenuation of keratinocyte proliferation during wound healing detectable optically through a higher redox ratio and longer NADH fluorescence lifetime. By measuring the correlation between NADH lifetime and the optical redox ratio at each day, we also demonstrate sensitivity to the proliferative phase of wound healing. Innovation: Label-free MPM was used to longitudinally monitor individual wounds in vivo, which revealed age-dependent differences in wound metabolism. Conclusion: These results indicate in vivo MPM can provide quantitative biomarkers of age-related delays in healing, which can be used in the future to provide patient-specific wound care.


Subject(s)
Age Factors , Flavin-Adenine Dinucleotide/analysis , NAD/analysis , Skin/metabolism , Wound Healing , Animals , Biomarkers/analysis , Female , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence, Multiphoton , Oxidation-Reduction
3.
Commun Biol ; 1: 198, 2018.
Article in English | MEDLINE | ID: mdl-30480099

ABSTRACT

Chronic wounds are difficult to diagnose and characterize due to a lack of quantitative biomarkers. Label-free multiphoton microscopy has emerged as a useful imaging modality capable of quantifying changes in cellular metabolism using an optical redox ratio of FAD/(NADH+FAD) autofluorescence. However, the utility of an optical redox ratio for long-term in vivo monitoring of tissue metabolism has not been robustly evaluated. In this study, we demonstrate how multiphoton microscopy can be used to monitor changes in the metabolism of individual full-thickness skin wounds in vivo. 3D optical redox ratio maps and NADH fluorescence lifetime images identify differences between diabetic and control mice during the re-epithelialization of wounds. These metabolic changes are associated with a transient increase in keratinocyte proliferation at the wound edge. Our study demonstrates that high-resolution, non-invasive autofluorescence imaging can be performed in vivo and that optical redox ratios can serve as quantitative optical biomarkers of impaired wound healing.

SELECTION OF CITATIONS
SEARCH DETAIL
...