Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
bioRxiv ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37873339

ABSTRACT

Vesicular monoamine transporter 2 (VMAT2) is an essential transporter that regulates brain monoamine transmission and is important for mood, cognition, motor activity, and stress regulation. However, VMAT2 remains underexplored as a pharmacological target. In this study, we report that tricyclic and tetracyclic antidepressants acutely inhibit, but persistently upregulate VMAT2 activity by promoting VMAT2 protein maturation. Importantly, the VMAT2 upregulation effect was greater in BE(2)-M17 cells that endogenously express VMAT2 as compared to a heterologous expression system (HEK293). The net sustained effect of tricyclics and tetracyclics is an upregulation of VMAT2 activity, despite their acute inhibitory effect. Furthermore, imipramine and mianserin, two representative compounds, also demonstrated rescue of nine VMAT2 variants that cause Brain Vesicular Monoamine Transport Disease (BVMTD). VMAT2 upregulation could be beneficial for disorders associated with reduced monoamine transmission, including mood disorders and BVMTD, a rare but often fatal condition caused by a lack of functional VMAT2. Our findings provide the first evidence that small molecules can upregulate VMAT2 and have potential therapeutic benefit for various neuropsychiatric conditions.

2.
Neuropsychopharmacology ; 48(12): 1742-1751, 2023 11.
Article in English | MEDLINE | ID: mdl-37349472

ABSTRACT

Glutamatergic NMDA receptors (NMDAR) are critical for cognitive function, and their reduced expression leads to intellectual disability. Since subpopulations of NMDARs exist in distinct subcellular environments, their functioning may be unevenly vulnerable to genetic disruption. Here, we investigate synaptic and extrasynaptic NMDARs on the major output neurons of the prefrontal cortex in mice deficient for the obligate NMDAR subunit encoded by Grin1 and wild-type littermates. With whole-cell recording in brain slices, we find that single, low-intensity stimuli elicit surprisingly-similar glutamatergic synaptic currents in both genotypes. By contrast, clear genotype differences emerge with manipulations that recruit extrasynaptic NMDARs, including stronger, repetitive, or pharmacological stimulation. These results reveal a disproportionate functional deficit of extrasynaptic NMDARs compared to their synaptic counterparts. To probe the repercussions of this deficit, we examine an NMDAR-dependent phenomenon considered a building block of cognitive integration, basal dendrite plateau potentials. Since we find this phenomenon is readily evoked in wild-type but not in Grin1-deficient mice, we ask whether plateau potentials can be restored by an adult intervention to increase Grin1 expression. This genetic manipulation, previously shown to restore cognitive performance in adulthood, successfully rescues electrically-evoked basal dendrite plateau potentials after a lifetime of NMDAR compromise. Taken together, our work demonstrates NMDAR subpopulations are not uniformly vulnerable to the genetic disruption of their obligate subunit. Furthermore, the window for functional rescue of the more-sensitive integrative NMDARs remains open into adulthood.


Subject(s)
Neurons , Receptors, N-Methyl-D-Aspartate , Mice , Animals , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Neurons/metabolism , Prefrontal Cortex/metabolism , Synapses/metabolism
3.
eNeuro ; 10(5)2023 05.
Article in English | MEDLINE | ID: mdl-37142435

ABSTRACT

With a wide variety of dopamine transporter (DAT) antibodies available commercially, it is important to validate which antibodies provide sufficient immunodetection for reproducibility purpose and for accurate analysis of DAT levels and/or location. Commercially available DAT antibodies that are commonly used were tested in western blotting (WB) on wild-type (WT) and DAT-knock-out (DAT-KO) brain tissue and with immunohistology (IH) techniques against coronal slices of unilaterally lesioned 6-OHDA rats, in addition to wild-type and DAT-knock-out mice. DAT-KO mice and unilateral 6-OHDA lesions in rats were used as a negative control for DAT antibody specificity. Antibodies were tested at various concentrations and rated based on signal detection varying from no signal to optimal signal detection. Commonly used antibodies, including AB2231 and PT-22 524-1-AP, did not provide specific DAT signals in WB and IH. Although certain antibodies provided a good DAT signal, such as SC-32258, D6944, and MA5-24796, they also presented nonspecific bands in WB. Many DAT antibodies did not detect the DAT as advertised, and this characterization of DAT antibodies may provide a guide for immunodetection of DAT for molecular studies.


Subject(s)
Brain , Dopamine Plasma Membrane Transport Proteins , Rats , Mice , Animals , Oxidopamine/toxicity , Reproducibility of Results , Mice, Knockout
4.
Article in English | MEDLINE | ID: mdl-36251462

ABSTRACT

Introduction: Cannabis use has been associated with an increased incidence of psychiatric disorders, yet the underlying neurobiological processes mediating these associations are poorly understood. Whereas exposure to Δ9-tetrahydrocannabinol (THC) has been associated with the development or exacerbation of psychosis, treatment with cannabidiol (CBD) has been associated with amelioration of psychosis. In this study, we demonstrate a complex effect of CBD in mouse models of psychosis, based on factors, including dose, strain, and genotype. Methods: Adult GluN1 knockdown (GluN1KD) and dopamine transporter knockout (DATKO) mice (almost equally balanced for male/female) were acutely treated with vehicle, THC (4 mg/kg), CBD (60, 120 mg/kg), or THC:CBD (1:15, 4:60 mg/kg) and tested in behavioral assays. Results: GluN1KD and DATKO mice displayed hyperactivity, impaired habituation, and sensorimotor gating, along with increased stereotypy and vertical activity. THC, alone and in combination with CBD, produced a robust "dampening" effect on the exploratory behavior regardless of strain or genotype. CBD exhibited a more complex profile. At 60 mg/kg, CBD had minimal effects on horizontal activity, but the effects varied in terms of directionality (increase vs. decrease) in other parameters; effects on stereotypic behaviors differ by genotype, while effects on vertical exploration differ by strain×genotype. CBD at 120 mg/kg had a "dampening" effect on exploration overall, except in GluN1KD mice, where no effect was observed. In terms of sensorimotor gating, both THC and CBD had minimal effects, except for 120 mg/kg CBD, which exacerbated the acoustic startle response. Conclusions: Here, we present a study that highlights the complex mechanism of phytocannabinoids, particularly CBD, in models of psychosis-like behavior. These data require careful interpretation, as agonism of the cannabinoid receptor 1 (CB1) resulting in a decrease in locomotion can be misinterpreted as "antipsychotic-like" activity in murine behavioral outputs of psychosis. Importantly, the THC-mediated decrease in hyperexploratory behavior observed in our models (alone or in combination) was not specific to the genetic mutants, but rather was observed regardless of strain or genotype. Furthermore, CBD treatment, when comparing mutants with their wild-type littermate controls, showed little to no "antipsychotic-like" activity in our models. Therefore, it is not only important to consider dose when designing/interpreting therapeutically driven phytocannabinoid studies, but also effects of strain or genetic vulnerability respective to the general population.

5.
Epilepsia ; 63(10): e132-e137, 2022 10.
Article in English | MEDLINE | ID: mdl-35983985

ABSTRACT

We report on an 8-year-old girl with severe developmental and epileptic encephalopathy due to the compound heterozygous null variants p.(Gln661*) and p.(Leu830Profs*2) in GRIN2A resulting in a knockout of the human GluN2A subunit of the N-methyl-D-aspartate receptor. Both parents had less severe GRIN2A-related phenotypes and were heterozygous carriers of the respective null variant. Functional investigations of both variants suggested a loss-of-function effect. This is the first description of an autosomal recessive, biallelic type of GRIN2A-related disorder. Nonetheless, there are marked parallels to two previously published families with severe epileptic encephalopathy due to homozygous null variants in GRIN1 as well as various knockout animal models. Compared to heterozygous null variants, biallelic knockout of either GluN1 or GluN2A is associated with markedly more severe phenotypes in both humans and mice. Furthermore, recent findings enable a potential precision medicine approach targeting GRIN-related disorders due to null variants.


Subject(s)
Epilepsy, Generalized , Mental Disorders , Animals , Child , Female , Humans , Mice , Phenotype , Receptors, N-Methyl-D-Aspartate/genetics
6.
Genes Brain Behav ; 21(6): e12825, 2022 07.
Article in English | MEDLINE | ID: mdl-35705513

ABSTRACT

The development and function of sensory systems require intact glutamatergic neurotransmission. Changes in touch sensation and vision are common symptoms in autism spectrum disorders, where altered glutamatergic neurotransmission is strongly implicated. Further, cortical visual impairment is a frequent symptom of GRIN disorder, a rare genetic neurodevelopmental disorder caused by pathogenic variants of GRIN genes that encode NMDA receptors. We asked if Grin1 knockdown mice (Grin1KD), as a model of GRIN disorder, had visual impairments resulting from NMDA receptor deficiency. We discovered that Grin1KD mice had deficient visual depth perception in the visual cliff test. Since Grin1KD mice are known to display robust changes in measures of learning, memory, and emotionality, we asked whether deficits in these higher-level processes could be partly explained by their visual impairment. By changing the experimental conditions to improve visual signals, we observed significant improvements in the performance of Grin1KD mice in tests that measure spatial memory, executive function, and anxiety. We went further and found destabilization of the outer segment of retina together with the deficient number and size of Meissner corpuscles (mechanical sensor) in the hind paw of Grin1KD mice. Overall, our findings suggest that abnormal sensory perception can mask the expression of emotional, motivational and cognitive behavior of Grin1KD mice. This study demonstrates new methods to adapt routine behavioral paradigms to reveal the contribution of vision and other sensory modalities in cognitive performance.


Subject(s)
Masks , Receptors, N-Methyl-D-Aspartate , Animals , Behavior, Animal/physiology , Exploratory Behavior/physiology , Maze Learning/physiology , Mice , Perception , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
7.
Front Cell Neurosci ; 16: 832536, 2022.
Article in English | MEDLINE | ID: mdl-35614973

ABSTRACT

Mutations in the dopamine transporter gene (SLC6A3) have been implicated in many human diseases. Among these is the infantile parkinsonism-dystonia known as Dopamine Transporter Deficiency Syndrome (DTDS). Afflicted individuals have minimal to no functional dopamine transporter protein. This is primarily due to retention of misfolded disease-causing dopamine transporter variants. This results in a variety of severe motor symptoms in patients and the disease ultimately leads to death in adolescence or young adulthood. Though no treatment is currently available, pharmacological chaperones targeting the dopamine transporter have been shown to rescue select DTDS disease-causing variants. Previous work has identified two DAT pharmacological chaperones with moderate potency and efficacy: bupropion and ibogaine. In this study, we carried out structure-activity relationships (SARs) for bupropion and ibogaine with the goal of identifying the chemical features required for pharmacological chaperone activity. Our results show that the isoquinuclidine substituent of ibogaine and its analogs is an important feature for pharmacological chaperone efficacy. For bupropion, the secondary amine group is essential for pharmacological chaperone activity. Lastly, we describe additional ibogaine and bupropion analogs with varying chemical modifications and variable pharmacological chaperone efficacies at the dopamine transporter. Our results contribute to the design and refinement of future dopamine transporter pharmacological chaperones with improved efficacies and potencies.

8.
Mol Psychiatry ; 27(5): 2393-2404, 2022 05.
Article in English | MEDLINE | ID: mdl-35264726

ABSTRACT

A substantial and diverse body of literature suggests that the pathophysiology of schizophrenia is related to deficits of bioenergetic function. While antipsychotics are an effective therapy for the management of positive psychotic symptoms, they are not efficacious for the complete schizophrenia symptom profile, such as the negative and cognitive symptoms. In this review, we discuss the relationship between dysfunction of various metabolic pathways across different brain regions in relation to schizophrenia. We contend that several bioenergetic subprocesses are affected across the brain and such deficits are a core feature of the illness. We provide an overview of central perturbations of insulin signaling, glycolysis, pentose-phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation in schizophrenia. Importantly, we discuss pharmacologic and nonpharmacologic interventions that target these pathways and how such interventions may be exploited to improve the symptoms of schizophrenia.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Schizophrenia , Antipsychotic Agents/metabolism , Antipsychotic Agents/therapeutic use , Brain/metabolism , Energy Metabolism , Humans , Psychotic Disorders/metabolism , Schizophrenia/metabolism
9.
Schizophr Res ; 249: 63-73, 2022 11.
Article in English | MEDLINE | ID: mdl-33189520

ABSTRACT

Numerous genetic and postmortem studies link N-methyl-d-aspartate receptor (NMDAR) dysfunction with schizophrenia, forming the basis of the popular glutamate hypothesis. Neuronal NMDAR abnormalities are consistently reported from both basic and clinical experiments, however, non-neuronal cells also contain NMDARs, and are rarely, if ever, considered in the discussion of glutamate action in schizophrenia. We offer an examination of recent discoveries elucidating the actions and consequences of NMDAR activation in the neuroendothelium. While there has been mixed literature regarding blood flow alterations in the schizophrenia brain, in this review, we posit that some common findings may be explained by neuroendothelial NMDAR dysfunction. In particular, we emphasize that endothelial NMDARs are key mediators of neurovascular coupling, where increased neuronal activity leads to increased blood flow. Based on the broad conclusions that hypoperfusion is a neuroanatomical finding in schizophrenia, we discuss potential mechanisms by which endothelial NMDARs contribute to this disorder. We propose that endothelial NMDAR dysfunction can be a primary cause of neurovascular abnormalities in schizophrenia. Importantly, functional MRI studies using BOLD signal as a proxy for neuron activity should be considered in a new light if neurovascular coupling is impaired in schizophrenia. This review is the first to propose that NMDARs in non-excitable cells play a role in schizophrenia.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Schizophrenia , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/diagnostic imaging , Glutamic Acid , Aspartic Acid , Brain
10.
Neuropharmacology ; 199: 108805, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34560056

ABSTRACT

Considerable genetic variation of N-methyl-d-aspartate receptors (NMDARs) has recently become apparent, with many hundreds of de novo variants identified through widely available clinical genetic testing. Individuals with GRIN variants present with neurological conditions such as epilepsy, autism, intellectual disability (ID), movement disorders, schizophrenia and behavioral disorders. Determination of the functional consequence of genetic variation for NMDARs should lead to precision therapeutics. Furthermore, genetic animal models harboring human variants have the potential to reveal mechanisms that are shared among different neurological conditions, providing strategies that may allow treatment of individuals who are refractory to therapy. Preclinical studies in animal models and small open label trials in humans support this idea. However, additional functional data for variants and animal models corresponding to multiple individuals with the same genotype are needed to validate this approach and to lead to thoughtfully designed, randomized, placebo-controlled clinical trials, which could provide data in order to determine safety and efficacy of potential precision therapeutics.


Subject(s)
Epilepsy/genetics , Movement Disorders/genetics , Neurodevelopmental Disorders/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Schizophrenia/genetics , Animals , Genetic Variation , Humans
11.
J Neurochem ; 158(4): 960-979, 2021 08.
Article in English | MEDLINE | ID: mdl-33991113

ABSTRACT

In Parkinson's disease, dopamine-containing nigrostriatal neurons undergo profound degeneration. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine biosynthesis. TH increases in vitro formation of reactive oxygen species, and previous animal studies have reported links between cytosolic dopamine build-up and oxidative stress. To examine effects of increased TH activity in catecholaminergic neurons in vivo, we generated TH-over-expressing mice (TH-HI) using a BAC-transgenic approach that results in over-expression of TH with endogenous patterns of expression. The transgenic mice were characterized by western blot, qPCR, and immunohistochemistry. Tissue contents of dopamine, its metabolites, and markers of oxidative stress were evaluated. TH-HI mice had a 3-fold increase in total and phosphorylated TH levels and an increased rate of dopamine synthesis. Coincident with elevated dopamine turnover, TH-HI mice showed increased striatal production of H2 O2 and reduced glutathione levels. In addition, TH-HI mice had elevated striatal levels of the neurotoxic dopamine metabolites 3,4-dihydroxyphenylacetaldehyde and 5-S-cysteinyl-dopamine and were more susceptible than wild-type mice to the effects of amphetamine and methamphetamine. These results demonstrate that increased TH alone is sufficient to produce oxidative stress in vivo, build up autotoxic dopamine metabolites, and augment toxicity.


Subject(s)
Amphetamine/pharmacology , Catecholamines/metabolism , Central Nervous System Stimulants/pharmacology , Oxidative Stress , Tyrosine 3-Monooxygenase/metabolism , 3,4-Dihydroxyphenylacetic Acid/analogs & derivatives , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Dopamine/analogs & derivatives , Dopamine/metabolism , Female , Gene Dosage , Glutathione/metabolism , Humans , Hydrogen Peroxide/metabolism , Male , Mice , Mice, Transgenic , Neurons/drug effects , Tyrosine 3-Monooxygenase/genetics
12.
Neuropsychopharmacology ; 46(2): 413-422, 2021 01.
Article in English | MEDLINE | ID: mdl-33036015

ABSTRACT

The endocannabinoid system (eCBs) encompasses the endocannabinoids, their synthetic and degradative enzymes, and cannabinoid (CB) receptors. The eCBs mediates inhibition of neurotransmitter release and acts as a major homeostatic system. Many aspects of the eCBs are altered in a number of psychiatric disorders including schizophrenia, which is characterized by dysregulation of dopaminergic signaling. The GluN1-Knockdown (GluN1KD) and Dopamine Transporter Knockout (DATKO) mice are models of hyperdopaminergia, which display abnormal psychosis-related behaviors, including hyperlocomotion and changes in pre-pulse inhibition (PPI). Here, we investigate the ability of a novel CB1 receptor (CB1R) allosteric modulator, ABM300, to ameliorate these dysregulated behaviors. ABM300 was characterized in vitro (receptor binding, ß-arrestin2 recruitment, ERK1/2 phosphorylation, cAMP inhibition) and in vivo (anxiety-like behaviors, cannabimimetic effects, novel environment exploratory behavior, pre-pulse inhibition, conditioned avoidance response) to assess the effects of the compound in dysregulated behaviors within the transgenic models. In vitro, ABM300 increased CB1R agonist binding but acted as an inhibitor of CB1R agonist induced signaling, including ß-arrestin2 translocation, ERK phosphorylation and cAMP inhibition. In vivo, ABM300 did not elicit anxiogenic-like or cannabimimetic effects, but it decreased novelty-induced hyperactivity, exaggerated stereotypy, and vertical exploration in both transgenic models of hyperdopaminergia, as well as normalizing PPI in DATKO mice. The data demonstrate for the first time that a CB1R allosteric modulator ameliorates the behavioral deficits in two models of increased dopamine, warranting further investigation as a potential therapeutic target in psychiatry.


Subject(s)
Cannabinoids , Endophenotypes , Animals , Mice , Mice, Knockout , Receptor, Cannabinoid, CB1/genetics , Receptors, Cannabinoid , Rodentia
13.
Mol Psychiatry ; 26(7): 2929-2942, 2021 07.
Article in English | MEDLINE | ID: mdl-32807843

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) are required to shape activity-dependent connections in the developing and adult brain. Impaired NMDAR signalling through genetic or environmental insults causes a constellation of neurodevelopmental disorders that manifest as intellectual disability, epilepsy, autism, or schizophrenia. It is not clear whether the developmental impacts of NMDAR dysfunction can be overcome by interventions in adulthood. This question is paramount for neurodevelopmental disorders arising from mutations that occur in the GRIN genes, which encode NMDAR subunits, and the broader set of mutations that disrupt NMDAR function. We developed a mouse model where a congenital loss-of-function allele of Grin1 can be restored to wild type by gene editing with Cre recombinase. Rescue of NMDARs in adult mice yields surprisingly robust improvements in cognitive functions, including those that are refractory to treatment with current medications. These results suggest that neurodevelopmental disorders arising from NMDAR deficiency can be effectively treated in adults.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Alleles , Animals , Brain/metabolism , Gene Editing , Loss of Function Mutation , Mice , Nerve Tissue Proteins/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
14.
Neuropharmacology ; 168: 108015, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32092443

ABSTRACT

Social isolation raises the risk for mood disorders associated with serotonergic disruption. Yet, the underlying mechanisms by which the stress of social isolation increases risk are not well understood. Men and women are differently vulnerable; however, this modulating role of sex is challenging to study in humans under carefully controlled conditions. Therefore, we investigated this question in mice of both sexes, asking how the long-term stress of social isolation (from weaning into adulthood) affects the excitability of serotonin neurons in the dorsal raphe nucleus as well as mouse behaviour. The electrophysiological experiments and the first set of behavioural tests were conducted in young adult mice, with additional behavioural assays completed as the mice matured to assess the stability of their behavioural phenotype. We found that social isolation exerted seemingly-opposite effects in male and female mice, relative to their respective group-housed littermate controls. This distinctive pattern was observed for the effect of social isolation on the control of serotonergic neuron excitability via the SK family of calcium-activated potassium channels. Furthermore, we observed a similar and consistent pattern on tests relevant to assessing the efficacy of anti-depressant medicines, including the forced swim test, the novelty-suppressed feeding test, and the sucrose preference test. These findings underscore the concept that stress-elicited illness manifests distinctly in males and females and that treatments aimed at restoring serotonergic function may require a sex-specific approach. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.


Subject(s)
Potassium Channels, Calcium-Activated/metabolism , Serotonergic Neurons/metabolism , Serotonin/metabolism , Sex Characteristics , Social Isolation/psychology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Potassium Channel Blockers/pharmacology , Potassium Channels, Calcium-Activated/antagonists & inhibitors , Serotonergic Neurons/drug effects
15.
Neurobiol Dis ; 132: 104527, 2019 12.
Article in English | MEDLINE | ID: mdl-31299220

ABSTRACT

NMDA receptor dysfunction is central to the encephalopathies caused by missense mutations in the NMDA receptor subunit genes. Missense variants of GRIN1, GRIN2A, and GRIN2B cause similar syndromes with varying severity of intellectual impairment, autism, epilepsy, and motor dysfunction. To gain insight into possible biomarkers of NMDAR hypofunction, we asked whether a loss-of-function variant in the Grin1 gene would cause structural changes in the brain that could be detected by MRI. We also studied the developmental trajectory of these changes to determine whether structural changes coincided with reported cognitive impairments in the mice. We performed magnetic resonance imaging in male Grin1-/- knockdown mice (GluN1KD) that were three, six, or twelve weeks old. Deformation-based morphometry was used to assess neuroanatomical differences. Volumetric reductions were detected in substantia nigra and striatum of GluN1KD mice at all ages. Changes in limbic structures were only evident at six weeks of age. Reductions in white matter volumes were first evident at three weeks, and additional deficits were detected at six and twelve weeks. FluoroJade immunofluorescence revealed degenerating neurons in twelve-week old GluN1KD mice. We conclude that Grin1 loss-of-function mutations cause volume reductions in dopaminergic structures early in development, while changes to limbic and white matter structures are delayed and are more pronounced in post-adolescent ages. The evidence of degenerating neurons in the mature brain indicates an ongoing process of cell loss as a consequence of NMDAR hypofunction.


Subject(s)
Brain/anatomy & histology , Brain/growth & development , Loss of Function Mutation/genetics , Nerve Tissue Proteins/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Age Factors , Animals , Brain/diagnostic imaging , Dopaminergic Neurons/physiology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Organ Size/physiology
16.
Sci Rep ; 9(1): 5087, 2019 03 25.
Article in English | MEDLINE | ID: mdl-30911039

ABSTRACT

Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and metabolism of lactate energetically couples astrocytes and neurons and supports brain bioenergetics. We examined the concentration of lactate in postmortem brain (dorsolateral prefrontal cortex) in subjects with schizophrenia, in two animal models of schizophrenia, the GluN1 knockdown mouse model and mutant disrupted in schizophrenia 1 (DISC1) mouse model, as well as inducible pluripotent stem cells (iPSCs) from a schizophrenia subject with the DISC1 mutation. We found increased lactate in the dorsolateral prefrontal cortex (p = 0.043, n = 16/group) in schizophrenia, as well as in frontal cortical neurons differentiated from a subject with schizophrenia with the DISC1 mutation (p = 0.032). We also found a decrease in lactate in mice with induced expression of mutant human DISC1 specifically in astrocytes (p = 0.049). These results build upon the body of evidence supporting bioenergetic dysfunction in schizophrenia, and suggests changes in lactate are a key feature of this often devastating severe mental illness.


Subject(s)
Brain/metabolism , Induced Pluripotent Stem Cells/metabolism , Lactates/metabolism , Schizophrenia/metabolism , Animals , Astrocytes/metabolism , Brain/cytology , Diagnosis , Disease Models, Animal , Frontal Lobe/cytology , Frontal Lobe/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Male , Mice , Mutation , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley
17.
Mol Psychiatry ; 24(9): 1319-1328, 2019 09.
Article in English | MEDLINE | ID: mdl-29497148

ABSTRACT

Schizophrenia is a devastating illness that affects over 2 million people in the United States and costs society billions of dollars annually. New insights into the pathophysiology of schizophrenia are needed to provide the conceptual framework to facilitate development of new treatment strategies. We examined bioenergetic pathways in the dorsolateral prefrontal cortex (DLPFC) of subjects with schizophrenia and control subjects using western blot analysis, quantitative real-time polymerase chain reaction, and enzyme/substrate assays. Laser-capture microdissection-quantitative polymerase chain reaction was used to examine these pathways at the cellular level. We found decreases in hexokinase (HXK) and phosphofructokinase (PFK) activity in the DLPFC, as well as decreased PFK1 mRNA expression. In pyramidal neurons, we found an increase in monocarboxylate transporter 1 mRNA expression, and decreases in HXK1, PFK1, glucose transporter 1 (GLUT1), and GLUT3 mRNA expression. These results suggest abnormal bioenergetic function, as well as a neuron-specific defect in glucose utilization, in the DLPFC in schizophrenia.


Subject(s)
Prefrontal Cortex/metabolism , Schizophrenia/physiopathology , Adult , Brain/metabolism , Energy Metabolism , Female , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 3/metabolism , Hexokinase/analysis , Hexokinase/metabolism , Humans , Laser Capture Microdissection , Male , Middle Aged , Monocarboxylic Acid Transporters/metabolism , Neurons/metabolism , Phosphofructokinase-1/analysis , Phosphofructokinase-1/genetics , Prefrontal Cortex/physiopathology , Pyramidal Cells/metabolism , RNA, Messenger/metabolism , Schizophrenia/genetics , Signal Transduction/physiology , Symporters/metabolism
18.
Mol Neurobiol ; 56(6): 4492-4517, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30338483

ABSTRACT

We utilized a cell-level approach to examine glycolytic pathways in the DLPFC of subjects with schizophrenia (n = 16) and control (n = 16) and found decreased mRNA expression of glycolytic enzymes in pyramidal neurons, but not astrocytes. To replicate these novel bioenergetic findings, we probed independent datasets for bioenergetic targets and found similar abnormalities. Next, we used a novel strategy to build a schizophrenia bioenergetic profile by a tailored application of the Library of Integrated Network-Based Cellular Signatures data portal (iLINCS) and investigated connected cellular pathways, kinases, and transcription factors using Enrichr. Finally, with the goal of identifying drugs capable of "reversing" the bioenergetic schizophrenia signature, we performed a connectivity analysis with iLINCS and identified peroxisome proliferator-activated receptor (PPAR) agonists as promising therapeutic targets. We administered a PPAR agonist to the GluN1 knockdown model of schizophrenia and found it improved long-term memory. Taken together, our findings suggest that tailored bioinformatics approaches, coupled with the LINCS library of transcriptional signatures of chemical and genetic perturbagens, may be employed to identify novel treatment strategies for schizophrenia and related diseases.


Subject(s)
Energy Metabolism , Gene Regulatory Networks , Schizophrenia/metabolism , Schizophrenia/therapy , Animals , Cluster Analysis , Down-Regulation/drug effects , Down-Regulation/genetics , Drug Discovery , Energy Metabolism/drug effects , Gene Knockdown Techniques , Gene Regulatory Networks/drug effects , Humans , Laser Capture Microdissection , Male , Mice , Motor Activity/drug effects , Nerve Tissue Proteins/metabolism , Pioglitazone/pharmacology , Prepulse Inhibition/drug effects , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Reflex, Startle/drug effects , Reproducibility of Results , Schizophrenia/genetics , Schizophrenia/physiopathology , Stereotyped Behavior/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics
19.
PLoS One ; 13(10): e0199341, 2018.
Article in English | MEDLINE | ID: mdl-30352064

ABSTRACT

NMDA receptors are important for cognition and are implicated in neuropsychiatric disorders. GluN1 knockdown (GluN1KD) mice have reduced NMDA receptor levels, striatal spine density deficits, and cognitive impairments. However, how NMDA depletion leads to these effects is unclear. Since Rho GTPases are known to regulate spine density and cognition, we examined the levels of RhoA, Rac1, and Cdc42 signaling proteins. Striatal Rac1-pathway components are reduced in GluN1KD mice, with Rac1 and WAVE-1 deficits at 6 and 12 weeks of age. Concurrently, medium spiny neuron (MSN) spine density deficits are present in mice at these ages. To determine whether WAVE-1 deficits were causal or compensatory in relation to these phenotypes, we intercrossed GluN1KD mice with WAVE-1 overexpressing (WAVE-Tg) mice to restore WAVE-1 levels. GluN1KD-WAVE-Tg hybrids showed rescue of striatal WAVE-1 protein levels and MSN spine density, as well as selective behavioral rescue in the Y-maze and 8-arm radial maze tests. GluN1KD-WAVE-Tg mice expressed normalized WAVE-1 protein levels in the hippocampus, yet spine density of hippocampal CA1 pyramidal neurons was not significantly altered. Our data suggest a nuanced role for WAVE-1 effects on cognition and a delineation of specific cognitive domains served by the striatum. Rescue of striatal WAVE-1 and MSN spine density may be significant for goal-directed exploration and associated long-term memory in mice.


Subject(s)
Exploratory Behavior , Maze Learning , Nerve Tissue Proteins/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Wiskott-Aldrich Syndrome Protein Family/metabolism , Animals , Behavior, Animal , Cognition , Crosses, Genetic , Dendritic Spines/metabolism , Female , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuropeptides/metabolism , Phenotype , Signal Transduction , Transgenes , rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism
20.
Front Pharmacol ; 9: 953, 2018.
Article in English | MEDLINE | ID: mdl-30233365

ABSTRACT

The trace amine associated receptor 1 (TAAR1) is a G-protein coupled receptor expressed in the monoaminergic regions of the brain, and represents a potential novel therapeutic target for the treatment of neurological disorders. While selective agonists for TAAR1 have been successfully identified, only one high affinity TAAR1 antagonist has been described thus far. We previously identified four potential low potency TAAR1 antagonists through an in silico screen on a TAAR1 homology model. One of the identified antagonists (compound 22) was predicted to have favorable physicochemical properties, which would allow the drug to cross the blood brain barrier. In vivo studies were therefore carried out and showed that compound 22 potentiates amphetamine- and cocaine-mediated locomotor activity. Furthermore, electrophysiology experiments demonstrated that compound 22 increased firing of dopamine neurons similar to EPPTB, the only known TAAR1 antagonist. In order to assess whether the effects of compound 22 were mediated through TAAR1, experiments were carried out on TAAR1-KO mice. The results showed that compound 22 is able to enhance amphetamine- and cocaine-mediated locomotor activity, even in TAAR1-KO mice, suggesting that the in vivo effects of this compound are not mediated by TAAR1. In collaboration with Psychoactive Drug Screening Program, we attempted to determine the targets for compound 22. Psychoactive Drug Screening Program (PDSP) results suggested several potential targets for compound 22 including, the dopamine, norepinephrine and serotonin transporters; as well as sigma 1 and 2 receptors. Our follow-up studies using heterologous cell systems showed that the dopamine transporter is not a target of compound 22. Therefore, the biological target of compound 22 mediating its psychoactive effects still remains unknown.

SELECTION OF CITATIONS
SEARCH DETAIL
...