Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 16: 1232795, 2023.
Article in English | MEDLINE | ID: mdl-37602191

ABSTRACT

Postsynaptic neurotransmitter receptors and their associated scaffolding proteins assemble into discrete, nanometer-scale subsynaptic domains (SSDs) within the postsynaptic membrane at both excitatory and inhibitory synapses. Intriguingly, postsynaptic receptor SSDs are mirrored by closely apposed presynaptic active zones. These trans-synaptic molecular assemblies are thought to be important for efficient neurotransmission because they concentrate postsynaptic receptors near sites of presynaptic neurotransmitter release. While previous studies have characterized the role of synaptic activity in sculpting the number, size, and distribution of postsynaptic SSDs at established synapses, it remains unknown whether neurotransmitter signaling is required for their initial assembly during synapse development. Here, we evaluated synaptic nano-architecture under conditions where presynaptic neurotransmitter release was blocked prior to, and throughout synaptogenesis with tetanus neurotoxin (TeNT). In agreement with previous work, neurotransmitter release was not required for the formation of excitatory or inhibitory synapses. The overall size of the postsynaptic specialization at both excitatory and inhibitory synapses was reduced at chronically silenced synapses. However, both AMPARs and GABAARs still coalesced into SSDs, along with their respective scaffold proteins. Presynaptic active zone assemblies, defined by RIM1, were smaller and more numerous at silenced synapses, but maintained alignment with postsynaptic AMPAR SSDs. Thus, basic features of synaptic nano-architecture, including assembly of receptors and scaffolds into trans-synaptically aligned structures, are intrinsic properties that can be further regulated by subsequent activity-dependent mechanisms.

2.
Curr Opin Neurobiol ; 74: 102540, 2022 06.
Article in English | MEDLINE | ID: mdl-35398662

ABSTRACT

Synaptic strength is thought to be determined by the number of presynaptic release sites, release probability and postsynaptic response to quantal release. Changes in these parameters are directly relevant to synaptic plasticity. However, our understanding of these determinants as they relate to synaptic function has been reformed by recent work on nanoscale organizations of synaptic proteins. Specifically, release probability is distributed heterogeneously among multiple release sites within a single active zone, and the quantal postsynaptic response depends strongly on the local distribution of receptors around the release site. These nanoscale characteristics reveal a new deeper layer of modulation of synaptic transmission and plasticity.


Subject(s)
Synapses , Synaptic Transmission , Neuronal Plasticity/physiology , Synapses/physiology , Synaptic Transmission/physiology
3.
Sci Adv ; 7(34)2021 Aug.
Article in English | MEDLINE | ID: mdl-34417170

ABSTRACT

Recent evidence suggests that nano-organization of proteins within synapses may control the strength of communication between neurons in the brain. The unique subsynaptic distribution of glutamate receptors, which cluster in nanoalignment with presynaptic sites of glutamate release, supports this hypothesis. However, testing it has been difficult because mechanisms controlling subsynaptic organization remain unknown. Reasoning that transcellular interactions could position AMPA receptors (AMPARs), we targeted a key transsynaptic adhesion molecule implicated in controlling AMPAR number, LRRTM2, using engineered, rapid proteolysis. Severing the LRRTM2 extracellular domain led quickly to nanoscale declustering of AMPARs away from release sites, not prompting their escape from synapses until much later. This rapid remodeling of AMPAR position produced significant deficits in evoked, but not spontaneous, postsynaptic receptor activation. These results dissociate receptor numbers from their nanopositioning in determination of synaptic function and support the novel concept that adhesion molecules acutely position receptors to dynamically control synaptic strength.

4.
Neuron ; 107(4): 667-683.e9, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32616470

ABSTRACT

Presynaptic CaV2 channels are essential for Ca2+-triggered exocytosis. In addition, there are two competing models for their roles in synapse structure. First, Ca2+ channels or Ca2+ entry may control synapse assembly. Second, active zone proteins may scaffold CaV2s to presynaptic release sites, and synapse structure is CaV2 independent. Here, we ablated all three CaV2s using conditional knockout in cultured hippocampal neurons or at the calyx of Held, which abolished evoked exocytosis. Compellingly, synapse and active zone structure, vesicle docking, and transsynaptic nano-organization were unimpaired. Similarly, long-term blockade of action potentials and Ca2+ entry did not disrupt active zone assembly. Although CaV2 knockout impaired the localization of ß subunits, α2δ-1 localized normally. Rescue with CaV2 restored exocytosis, and CaV2 active zone targeting depended on the intracellular C-terminus. We conclude that synapse assembly is independent of CaV2s or Ca2+ entry through them. Instead, active zone proteins recruit and anchor CaV2s via CaV2 C-termini.


Subject(s)
Calcium Channels/metabolism , Presynaptic Terminals/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Animals , Calcium/metabolism , Calcium Channels/genetics , Exocytosis/physiology , Mice, Knockout , Neurons/metabolism , Synaptic Vesicles/metabolism
5.
Sci Rep ; 9(1): 14842, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31619738

ABSTRACT

Knowledge of efficacious dosing respective to exercise type and pain condition is extremely limited in the literature. This study aimed to determine the impact of dose of moderate intensity treadmill walking on experimentally-induced pain in healthy human participants. Forty females were divided into 4 groups: control (no exercise), low dose exercise (3×/wk), moderate dose exercise (5×/wk) or high dose exercise (10×/wk). Over a 7-day period, subjects performed treadmill walking during assigned exercise days. Both qualitative and quantitative measures of pain were measured at baseline, during the trial, and 24 hrs post-final intervention session via sensitivity thresholds to painful thermal and painful pressure stimulation. Significant effects of treatment were found post-intervention for constant pressure pain intensity (p = 0.0016) and pain unpleasantness ratings (p = 0.0014). Post-hoc tests revealed significant differences between control and moderate and control and high dose groups for constant pressure pain intensity (p = 0.0015), (p = 0.0094), respectively and constant pressure pain unpleasantness (p = 0.0040), (p = 0.0040), respectively. Moderate and high dose groups had the greatest reductions in ratings of pain, suggesting that our lowest dose of exercise was not sufficient to reduce pain and that the moderate dose of exercise may be a sufficient starting dose for exercise-based adjuvant pain therapy.


Subject(s)
Exercise Therapy , Pain Management , Adolescent , Adult , Female , Healthy Volunteers , Humans , Non-Randomized Controlled Trials as Topic , Pain Perception , Pain Threshold , Walking , Young Adult
6.
Proteomes ; 6(4)2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30487426

ABSTRACT

Synapses are specialized neuronal cell-cell contacts that underlie network communication in the mammalian brain. Across neuronal populations and circuits, a diverse set of synapses is utilized, and they differ in their molecular composition to enable heterogenous connectivity patterns and functions. In addition to pre- and post-synaptic specializations, the synaptic cleft is now understood to be an integral compartment of synapses that contributes to their structural and functional organization. Aiming to map the cleft proteome, this study applied a peroxidase-mediated proximity labeling approach and used the excitatory synaptic cell adhesion protein SynCAM 1 fused to horseradish peroxidase (HRP) as a reporter in cultured cortical neurons. This reporter marked excitatory synapses as measured by confocal microcopy and was targeted to the edge zone of the synaptic cleft as determined using 3D dSTORM super-resolution imaging. Proximity labeling with a membrane-impermeant biotin-phenol compound restricted labeling to the cell surface, and Label-Free Quantitation (LFQ) mass spectrometry combined with ratiometric HRP tagging of membrane vs. synaptic surface proteins was used to identify the proteomic content of excitatory clefts. Novel cleft candidates were identified, and Receptor-type tyrosine-protein phosphatase zeta was selected and successfully validated. This study supports the robust applicability of peroxidase-mediated proximity labeling for synaptic cleft proteomics and its potential for understanding synapse heterogeneity in health and changes in diseases such as psychiatric disorders and addiction.

SELECTION OF CITATIONS
SEARCH DETAIL
...