Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 6(7): e21902, 2011.
Article in English | MEDLINE | ID: mdl-21779351

ABSTRACT

BACKGROUND: Asthma exacerbations remain a major unmet clinical need. The difficulty in obtaining airway tissue and bronchoalveolar lavage samples during exacerbations has greatly hampered study of naturally occurring exacerbations. This study was conducted to determine if mRNA profiling of peripheral blood mononuclear cells (PBMCs) could provide information on the systemic molecular pathways involved during asthma exacerbations. METHODOLOGY/PRINCIPAL FINDINGS: Over the course of one year, gene expression levels during stable asthma, exacerbation, and two weeks after an exacerbation were compared using oligonucleotide arrays. For each of 118 subjects who experienced at least one asthma exacerbation, the gene expression patterns in a sample of peripheral blood mononuclear cells collected during an exacerbation episode were compared to patterns observed in multiple samples from the same subject collected during quiescent asthma. Analysis of covariance identified genes whose levels of expression changed during exacerbations and returned to quiescent levels by two weeks. Heterogeneity among visits in expression profiles was examined using K-means clustering. Three distinct exacerbation-associated gene expression signatures were identified. One signature indicated that, even among patients without symptoms of respiratory infection, genes of innate immunity were activated. Antigen-independent T cell activation mediated by IL15 was also indicated by this signature. A second signature revealed strong evidence of lymphocyte activation through antigen receptors and subsequent downstream events of adaptive immunity. The number of genes identified in the third signature was too few to draw conclusions on the mechanisms driving those exacerbations. CONCLUSIONS/SIGNIFICANCE: This study has shown that analysis of PBMCs reveals systemic changes accompanying asthma exacerbation and has laid the foundation for future comparative studies using PBMCs.


Subject(s)
Asthma/blood , Asthma/metabolism , Signal Transduction/physiology , Adult , Asthma/genetics , Female , Gene Expression Profiling/methods , Humans , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Polymerase Chain Reaction , Principal Component Analysis , Signal Transduction/genetics
2.
J Transl Med ; 8: 50, 2010 May 26.
Article in English | MEDLINE | ID: mdl-20504348

ABSTRACT

BACKGROUND: Selective neutralization of the IL21/IL21R signaling pathway is a promising approach for the treatment of a variety of autoimmune diseases. Ab-01 is a human neutralizing anti-IL21R antibody. In order to ensure that the activities of Ab-01 are restricted to neutralization even under in vitro cross-linking and in vivo conditions, a comprehensive assessment of agonistic potential of Ab-01 was undertaken. METHODS: In vitro antibody cross-linking and cell culture protocols reported for studies with a human agonistic antibody, TGN1412, were followed for Ab-01. rhIL21, the agonist ligand of the targeted receptor, and cross-linked anti-CD28 were used as positive controls for signal transduction. In vivo agonistic potential of Ab-01 was assessed by measuring expression levels of cytokine storm-associated and IL21 pathway genes in blood of cynomolgus monkeys before and after IV administration of Ab-01. RESULTS: Using a comprehensive set of assays that detected multiple activation signals in the presence of the positive control agonists, in vitro Ab-01-dependent activation was not detected in either PBMCs or the rhIL21-responsive cell line Daudi. Furthermore, no difference in gene expression levels was detected in blood before and after in vivo Ab-01 dosing of cynomolgus monkeys. CONCLUSIONS: Despite efforts to intentionally force an agonistic signal from Ab-01, none could be detected.

SELECTION OF CITATIONS
SEARCH DETAIL
...