Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Dis ; 38(12): 1047-61, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25322679

ABSTRACT

Pancreas disease (PD) caused by salmonid alphavirus (SAV) has a significant negative economic impact in the salmonid fish farming industry in northern Europe. Until recently, only SAV subtype 3 was present in Norwegian fish farms. However, in 2011, a marine SAV 2 subtype was detected in a fish farm outside the PD-endemic zone. This subtype has spread rapidly among fish farms in mid-Norway. The PD mortality in several farms has been lower than expected, although high mortality has also been reported. In this situation, the industry and the authorities needed scientific-based information about the virulence of the marine SAV 2 strain in Norway to decide how to handle this new situation. Atlantic salmon post-smolts were experimentally infected with SAV 2 and SAV 3 strains from six different PD cases in Norway. SAV 3-infected fish showed higher mortality than SAV 2-infected fish. Among the SAV 3 isolates, two isolates gave higher mortality than the third one. At the end of the experiment, fish in all SAV-infected groups had significantly lower weight than the uninfected control fish. This is the first published paper on PD to document that waterborne infection produced significantly higher mortality than intraperitoneal injection.


Subject(s)
Alphavirus Infections/veterinary , Alphavirus/isolation & purification , Fish Diseases/virology , Salmo salar/virology , Alphavirus/pathogenicity , Alphavirus Infections/mortality , Alphavirus Infections/pathology , Alphavirus Infections/virology , Animals , Fish Diseases/mortality , Fish Diseases/pathology , Fisheries , Norway
2.
J Fish Dis ; 31(8): 567-78, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18482384

ABSTRACT

Two series of experimental challenge trials were performed for evaluation of multivalent oil-adjuvanted vaccines with and without an infectious pancreatic necrosis virus (IPNV) antigen component. In both the trial series, Atlantic salmon were hatched, reared, vaccinated and subjected to temperature and light manipulation to induce smoltification. When ready for sea the fish were transported to the VESO Vikan experimental laboratory for bath or cohabitant challenge with IPNV. In the first series, four vaccination and bath challenge trials involving 2-year classes of experimental fish were conducted. In the second series, three groups of eyed eggs of Atlantic salmon allegedly differing in their innate resistance to IPNV were used (Storset, Strand, Wetten, Kjøglum & Ramstad 2007). Hatching, rearing and smoltification were synchronized for each group, and fish from each genetic group were randomly allocated IPN vaccine, reference vaccine or saline before being placed into parallel tanks for bath or cohabitant challenge. In the first series of trials, IPN-specific mortality commenced on day 10-12 after bath challenge. Replicates showed similar results. In trials 1 and 2 belonging to the same experimental fish year class, the average cumulative control mortality reached 60.6% and 79.5%, respectively, whereas in trials 3 and 4 belonging to the following year class the control mortality was consistently below 50%. In the second series of trials, the experimental fish originating from allegedly IPN susceptible parents consistently showed the highest cumulative mortality among the unvaccinated controls (>75%) whereas smolts derived from allegedly IPNV resistant parents showed only 26-35% control mortality. The IPN-vaccinated fish experienced significantly improved survival vs. the fish immunized with reference vaccine, with RPS values above 75% in the IPN susceptible strain. In the IPN resistant strain, the protection outcomes were variable and in part non-significant. The outcome of both the trial series suggests that control mortalities above 50% are necessary to reliably demonstrate specific protection with IPN vaccines.


Subject(s)
Birnaviridae Infections/veterinary , Infectious pancreatic necrosis virus/immunology , Salmo salar/genetics , Salmo salar/immunology , Viral Vaccines/immunology , Animals , Birnaviridae Infections/genetics , Birnaviridae Infections/mortality , Birnaviridae Infections/prevention & control , Fish Diseases/genetics , Fish Diseases/mortality , Fish Diseases/prevention & control , Fish Diseases/virology , Salmo salar/virology , Selection, Genetic
3.
J Fish Dis ; 30(12): 723-31, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18034679

ABSTRACT

Atlantic salmon S1/2 pre-smolts from the VESO Vikan hatchery were assigned to study groups, i.p. immunized with commercially available, multivalent oil-adjuvanted vaccines with (Norvax Compact 6 - NC-6) or without (Norvax Compact 4 - NC-4) recombinant infectious pancreatic necrosis virus (IPNV) antigen. A control group received saline solution. When ready for sea, the fish were transported to the VESO Vikan experimental laboratory, where two identical tanks were stocked with 75 fish per group before being transferred to 10 degrees C sea water and exposed by bath to first passage IPNV grown in CHSE-214 cells. The third tank containing 40 fish from each group was challenged by the introduction of 116 fish that had received an i.p injection of IPNV-challenge material. The remaining vaccinated fish were transported to the VESO Vikan marine field trial site and placed in two identical pens, each containing approximately 53 000 fish from the NC-6 group and 9000 fish from the NC-4 group. In the experimental bath challenge trial, the cumulative mortality was 75% and 78% in the control groups, and the relative percentage survival (RPS) of the NC-6-immunized fish vs. the reference vaccine groups was 60% and 82%, respectively. In the cohabitation challenge, the control mortality reached 74% and the IPNV-specific vaccine RPS was 72%. In both models, the reference vaccine lacking IPNV antigen gave a moderate but statistically significant non-specific protection. In the field, a natural outbreak of infectious pancreatic necrosis (IPN) occurred after 7 weeks lasting for approximately 3.5 months before problems due to winter ulcers became dominating. During this outbreak, mortality in the NC-4 groups were 33.5% and 31.6%, respectively, whereas mortality in the NC-6 groups were 6.9% and 5.3%, respectively, amounting to 81% IPNV-specific protection. In conclusion, the IPN protection estimates obtained by experimental challenges were consistent between tanks, and were confirmed by the field results.


Subject(s)
Birnaviridae Infections/veterinary , Fish Diseases/prevention & control , Fish Diseases/virology , Immunization/veterinary , Infectious pancreatic necrosis virus/immunology , Salmo salar , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Aquaculture/methods , Birnaviridae Infections/immunology , Birnaviridae Infections/prevention & control , Birnaviridae Infections/virology , Fish Diseases/immunology , Immunization/methods , Norway , Random Allocation , Survival Analysis , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology , Viral Vaccines/pharmacology
4.
Dis Aquat Organ ; 50(1): 29-33, 2002 Jun 21.
Article in English | MEDLINE | ID: mdl-12152902

ABSTRACT

Four commercial salmon farms on the West coast of Norway were recruited to a programme of field trials in which the efficacy of SLICE (0.2% emamectin benzoate; Schering-Plough Animal Health) was compared with a commercially available product, EKTOBANN (teflubenzuron 2 g kg(-1); Skretting A/S) in treating natural sea lice Lepeophtheirus salmonis infections in Atlantic salmon Salmo salmar L. At each test site, 3 fish pens were treated with each product. In total, nearly 1.2 million first-year-class fish were included in the trial, of which approximately 561,000 received emamectin benzoate at a dosage of 50 microg kg(-1) body wt d(-1), while approximately 610,000 received teflubenzuron at a dosage of 10 mg kg(-1) body wt d(-1). Medicated feed was provided at 0.5% body wt d(-1) over 7 consecutive days. Feed containing emamectin benzoate was generally well accepted by the fish and no problems were encountered in feeding the medicated diet at the desired dose. Lice numbers were counted 2 d before and 1, 7, 14 and 21 d after commencement of treatment. While treatment with both substances rapidly reduced lice numbers, pens treated with emamectin benzoate were found to harbour significantly fewer lice 14 and 21 d post-treatment. Twenty-one days following treatment with emamectin benzoate the lice abundance was reduced on average by 94%. Limited sampling outside the main study period indicated that emamectin benzoate protects against sea-lice infestation over longer periods.


Subject(s)
Crustacea , Ectoparasitic Infestations/veterinary , Fish Diseases/drug therapy , Insecticides/administration & dosage , Ivermectin/analogs & derivatives , Ivermectin/administration & dosage , Salmo salar/parasitology , Administration, Oral , Animals , Aquaculture , Benzamides/administration & dosage , Benzamides/therapeutic use , Ectoparasitic Infestations/drug therapy , Insecticides/therapeutic use , Ivermectin/therapeutic use , Norway , Treatment Outcome
5.
J Fish Dis ; 21(3): 193-204, 1998 May.
Article in English | MEDLINE | ID: mdl-21361974

ABSTRACT

Atlantic salmon post-smolts were given an intraperitoneal (ip) injection of tissue homogenate of Atlantic salmon fry from an outbreak of infectious pancreatic necrosis (IPN), and cohabitants were given an ip injection of Earle's balanced salt solution (EBSS). Parallel treatment groups were exposed to recurrent episodes of environmental stress by water drainage twice a week. Fish injected with EBSS and non-injected fish were exposed to water drainage. The control fish were left untreated. Mortality due to IPN started 3 weeks after challenge in non-injected and EBSS-injected fish that had been exposed to water drainage. This showed that the fish used in the experiment were covertly infected with IPN virus (IPNV) prior to challenge, although no virus was detected in the fish sampled before the experiment. In fish that received an injection of IPNV, mortality started 5-6 days after challenge, regardless of the presence or absence of stress exposure. The EBSS-injected cohabitants started to die after an additional 5-6 days, also regardless of the presence or absence of stress exposure. The final cumulative mortality in the IPNV-injected fish was significantly lower than in the EBSS-injected cohabitants, thus suggesting that the secondary immune response after injection of IPNV provided more protection than the response after a water-borne infection. No disease outbreak was observed in the control fish.

6.
Phys Rev B Condens Matter ; 51(20): 14504-14523, 1995 May 15.
Article in English | MEDLINE | ID: mdl-9978383
SELECTION OF CITATIONS
SEARCH DETAIL
...