Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters











Publication year range
1.
Chemistry ; : e202402409, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39183180

ABSTRACT

Complex dynamic systems displaying interdependency between nitroaldol and boronic ester reactions have been demonstrated. Nitroalkane-1,3-diols, generated by the nitroaldol reaction, were susceptible to ester formation with different boronic acids in aprotic solvents, whereas hydrolysis of the esters occurred in the presence of water. The boronic ester formation led to significant stabilization of the nitroaldol adducts under basic conditions. The use of bifunctional building blocks was furthermore established, allowing for main chain nitroaldol-boronate dynamers as well as complex network dynamers with distinct topologies. The shape and rigidity of the resulting dynamers showed an apparent dependency on the configuration of the boronic acids.

2.
Sci Adv ; 10(34): eadq0294, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39167637

ABSTRACT

Real-time tracking of intracellular carbohydrates remains challenging. While click chemistry allows bio-orthogonal tagging with fluorescent probes, the reaction permanently alters the target molecule and only allows a single snapshot. Here, we demonstrate click-free mid-infrared photothermal (MIP) imaging of azide-tagged carbohydrates in live cells. Leveraging the micromolar detection sensitivity for 6-azido-trehalose (TreAz) and the 300-nm spatial resolution of MIP imaging, the trehalose recycling pathway in single mycobacteria, from cytoplasmic uptake to membrane localization, is directly visualized. A peak shift of azide in MIP spectrum further uncovers interactions between TreAz and intracellular protein. MIP mapping of unreacted azide after click reaction reveals click chemistry heterogeneity within a bacterium. Broader applications of azido photothermal probes to visualize the initial steps of the Leloir pathway in yeasts and the newly synthesized glycans in mammalian cells are demonstrated.


Subject(s)
Azides , Click Chemistry , Azides/chemistry , Click Chemistry/methods , Humans , Trehalose/metabolism , Trehalose/chemistry , Carbohydrates/chemistry , Fluorescent Dyes/chemistry , Biological Transport
3.
ACS Appl Bio Mater ; 7(7): 4785-4794, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38963757

ABSTRACT

The increasing prevalence of multidrug-resistant (MDR) pathogens has promoted the development of innovative approaches, such as drug repurposing, synergy, and efficient delivery, in complement to traditional antibiotics. In this study, we present an approach based on biocompatible nanocarriers containing antimicrobial cations and known antibiotics. The matrices were prepared by coordinating GaIII or InIII to formulations of chitosan/tripolyphosphate or catechol-functionalized chitosan with or without encapsulated antibiotics, yielding particles of 100-200 nm in hydrodynamic diameter. MDR clinical isolates of Pseudomonas aeruginosa were found to be effectively inhibited by the nanocarriers under nutrient-limiting conditions. Fractional inhibitory concentration (FIC) indices revealed that cation- and antibiotic-encapsulated nanomatrices were effective against both Gram-negative and Gram-positive pathogens. Metallophores, such as deferoxamine (DFO), were probed to facilitate the sequestration and transport of the antimicrobial cations GaIII or InIII. Although the antimicrobial activities were less significant with DFO, the eradication of biofilm-associated bacteria showed promising trends against P. aeruginosa and Staphylococcus epidermidis. Interestingly, indium-containing compounds showed enhanced activity on biofilm formation and eradication, neutralizing P. aeruginosa under Fe-limiting conditions. In particular, InIII-cross-linked catechol-modified chitosan matrices were able to inhibit pathogenic growth together with DFO. The nanocarriers showed low cytotoxicity toward A549 cells and improvable CC50 values with NIH/3T3 cells.


Subject(s)
Anti-Bacterial Agents , Drug Carriers , Microbial Sensitivity Tests , Particle Size , Pseudomonas aeruginosa , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Drug Carriers/chemistry , Materials Testing , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Mice , Animals , Biofilms/drug effects , Nanoparticles/chemistry , Humans , Cell Survival/drug effects , Staphylococcus epidermidis/drug effects , Chitosan/chemistry
4.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38559219

ABSTRACT

Real-time tracking of intracellular carbohydrates remains challenging. While click chemistry allows bio-orthogonal tagging with fluorescent probes, the reaction permanently alters the target molecule and only allows a single snapshot. Here, we demonstrate click-free mid-infrared photothermal (MIP) imaging of azide-tagged carbohydrates in live cells. Leveraging the micromolar detection sensitivity for 6-azido-trehalose (TreAz) and the 300-nm spatial resolution of MIP imaging, the trehalose recycling pathway in single mycobacteria, from cytoplasmic uptake to membrane localization, is directly visualized. A peak shift of azide in MIP spectrum further uncovers interactions between TreAz and intracellular protein. MIP mapping of unreacted azide after click reaction reveals click chemistry heterogeneity within a bacterium. Broader applications of azido photothermal probes to visualize the initial steps of the Leloir pathway in yeasts and the newly synthesized glycans in mammalian cells are demonstrated.

5.
J Org Chem ; 89(2): 1091-1098, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38154053

ABSTRACT

Through a dynamic polymerization and self-sorting process, a range of lowellane macrocycles have been efficiently generated in nitroaldol systems composed of aromatic dialdehydes and aliphatic or aromatic dinitroalkanes. All identified macrocycles show a composition of two repeating units, resulting in tetra-ß-nitroalcohols of different structures. The effects of the building block structure on the macrocyclization process have been demonstrated, and the influence from the solvent has been explored. In general, the formation of the lowellanes was amplified in response to phase-change effects, although solution-phase structures were, in some cases, favored.

6.
bioRxiv ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38076823

ABSTRACT

The Burkholderia genus encompasses multiple human pathogens, including potential bioterrorism agents, that are often extensively antibiotic resistant. The FixLJ pathway in Burkholderia is a two-component system that regulates virulence. Previous work showed that fixLJ mutations arising during chronic infection confer increased virulence while decreasing the activity of the FixLJ pathway. We hypothesized that small-molecule activators of the FixLJ pathway could serve as anti-virulence therapies. Here, we developed a high-throughput assay that screened over 28,000 compounds and identified 11 that could specifically active the FixLJ pathway. Eight of these compounds, denoted Burkholderia Fix Activator (BFA) 1-8, inhibited the intracellular survival of Burkholderia in THP-1-dervived macrophages in a fixLJ-dependent manner without significant toxicity. One of the compounds, BFA1, inhibited the intracellular survival in macrophages of multiple Burkholderia species. Predictive modeling of the interaction of BFA1 with Burkholderia FixL suggests that BFA1 binds to the putative ATP/ADP binding pocket in the kinase domain, indicating a potential mechanism for pathway activation. These results indicate that small-molecule FixLJ pathway activators are promising anti-virulence agents for Burkholderia and define a new paradigm for antibacterial therapeutic discovery.

7.
JACS Au ; 3(4): 1017-1028, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37124305

ABSTRACT

A fluorescence turn-on probe, an azide-masked and trehalose-derivatized carbazole (Tre-Cz), was developed to image mycobacteria. The fluorescence turn-on is achieved by photoactivation of the azide, which generates a fluorescent product through an efficient intramolecular C-H insertion reaction. The probe is highly specific for mycobacteria and could image mycobacteria in the presence of other Gram-positive and Gram-negative bacteria. Both the photoactivation and detection can be accomplished using a handheld UV lamp, giving a limit of detection of 103 CFU/mL, which can be visualized by the naked eye. The probe was also able to image mycobacteria spiked in sputum samples, although the detection sensitivity was lower. Studies using heat-killed, stationary-phase, and isoniazid-treated mycobacteria showed that metabolically active bacteria are required for the uptake of Tre-Cz. The uptake decreased in the presence of trehalose in a concentration-dependent manner, indicating that Tre-Cz hijacked the trehalose uptake pathway. Mechanistic studies demonstrated that the trehalose transporter LpqY-SugABC was the primary pathway for the uptake of Tre-Cz. The uptake decreased in the LpqY-SugABC deletion mutants ΔlpqY, ΔsugA, ΔsugB, and ΔsugC and fully recovered in the complemented strain of ΔsugC. For the mycolyl transferase antigen 85 complex (Ag85), however, only a slight reduction of uptake was observed in the Ag85 deletion mutant ΔAg85C, and no incorporation of Tre-Cz into the outer membrane was observed. The unique intracellular incorporation mechanism of Tre-Cz through the LpqY-SugABC transporter, which differs from other trehalose-based fluorescence probes, unlocks potential opportunities to bring molecular cargoes to mycobacteria for both fundamental studies and theranostic applications.

8.
Macromol Rapid Commun ; 44(10): e2300011, 2023 May.
Article in English | MEDLINE | ID: mdl-37004148

ABSTRACT

Dynamic covalent gels are synthesized from an aromatic trialdehyde and α,ω-dinitroalkanes via the nitroaldol reaction in organic solvents. The gelation process can be fine-tuned by changing the starting nitroalkanes, solvents, feed concentration, catalyst loading, or reaction temperature. The resulting organogels demonstrate good structural integrity and excellent self-healing ability. Intact xerogels are produced upon drying, without damaging the network, and the solvent-free network can recover its gel form in the presence of an organic solvent. Furthermore, the crosslinked dynameric gel depolymerize to small molecules in response to excess nitromethane.


Subject(s)
Solvents , Solvents/chemistry , Temperature , Gels/chemistry , Catalysis
9.
Angew Chem Int Ed Engl ; 62(11): e202214086, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36642692

ABSTRACT

In this work, we show that the addition of thiourea (TU) initiated broad-spectrum antimicrobial activity of otherwise inactive D-maltose-capped gold nanoclusters (AuNC-Mal). For example, AuNC-Mal/TU was effective against multidrug-resistant Pseudomonas aeruginosa with a minimum inhibitory concentration (MIC) of 1 µg mL-1 (2.5 µM [Au]) while having 30-60 times lower in vitro cytotoxicity against mammalian cells. The reaction of AuNC-Mal and TU generated the antimicrobial species of [Au(TU)2 ]+ and smaller AuNCs. TU increased the accumulation of Au in bacteria and helped maintain the oxidation state as AuI (vs. AuIII ). The modes of action included the inhibition of thioredoxin reductase, interference with the CuI regulation and depletion of ATP. Moreover, the antimicrobial activity did not change in the presence of colistin or carbonyl cyanide 3-chlorophenylhydrazone, suggesting that AuNC-Mal/TU was indifferent to the outer membrane barrier and to bacterial efflux pumps.


Subject(s)
Metal Nanoparticles , Animals , Gold/pharmacology , Anti-Bacterial Agents/pharmacology , Colistin , Microbial Sensitivity Tests , Bacteria , Mammals
10.
Chemistry ; 28(64): e202201863, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-35971799

ABSTRACT

Dynamic covalent polymers of different topology have been synthesized from an aromatic dialdehyde and α,ω-dinitroalkanes via the nitroaldol reaction. All dinitroalkanes yielded dynamers with the dialdehyde, where the length of the dinitroalkane chain played a vital role in determining the structure of the final products. For longer dinitroalkanes, linear dynamers were produced, where the degree of polymerization reached a plateau at higher feed concentrations. In the reactions involving 1,4-dinitrobutane and 1,5-dinitropentane, specific macrocycles were formed through depolymerization of the linear chains, further driven by precipitation. At lower temperature, the same systemic self-sorting effect was also observed for the 1,6-dinitrohexane-based dynamers. Moreover, the dynamers showed a clear adaptive behavior, displaying depolymerization and rearrangement of the dynamer chains in response to alternative building blocks as external stimuli.


Subject(s)
Heterocyclic Compounds, 3-Ring , Nitro Compounds , Polymerization , Polymers/chemistry
11.
Adv Healthc Mater ; 11(9): e2101032, 2022 05.
Article in English | MEDLINE | ID: mdl-34350709

ABSTRACT

Auranofin, a gold(I)-complex with tetraacetylated thioglucose (Ac4 GlcSH) and triethylphosphine ligands, is an FDA-approved drug used as an anti-inflammatory aid in the treatment of rheumatoid arthritis. In repurposing auranofin for other diseases, it was found that the drug showed significant activity against Gram-positive but was inactive against Gram-negative bacteria. Herein, the design and synthesis of gold nanoclusters (AuNCs) based on the structural motif of auranofin are reported. Phosphine-capped AuNCs are synthesized and glycosylated, yielding auranofin analogues with mixed triphenylphosphine monosulfonate (TPPMS)/Ac4 GlcSH ligand shells. These AuNCs are active against both Gram-negative and Gram-positive bacteria, including multidrug-resistant pathogens. Notably, an auranofin analogue, a mixed-ligand 1.6 nm AuNC 4b, is more active than auranofin against Pseudomonas aeruginosa, while exhibiting lower toxicity against human A549 cells. The enhanced antibacterial activity of these AuNCs is characterized by a greater uptake of Au by the bacteria compared to AuI complexes. Additional factors include increased oxidative stress, moderate inhibition of thioredoxin reductase (TrxR), and DNA damage. Most intriguingly, the uptake of AuNCs are not affected by the bacterial outer membrane (OM) barrier or by binding with the extracellular proteins. This contrasts with AuI complexes like auranofin that are susceptible to protein binding and hindered by the OM barrier.


Subject(s)
Auranofin , Gold , Auranofin/chemistry , Auranofin/pharmacology , Gold/chemistry , Gold/pharmacology , Gram-Positive Bacteria , Humans , Ligands , Thioredoxin-Disulfide Reductase
12.
Chemistry ; 27(40): 10335-10340, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-33780566

ABSTRACT

Understanding the emergence of function in complex reaction networks is a primary goal of systems chemistry and origin-of-life studies. Especially challenging is to create systems that simultaneously exhibit several emergent functions that can be independently tuned. In this work, a multifunctional complex reaction network of nucleophilic small molecule catalysts for the Morita-Baylis-Hillman (MBH) reaction is demonstrated. The dynamic system exhibited triggered self-resolution, preferentially amplifying a specific catalyst/product set out of a many potential alternatives. By utilizing selective reversibility of the products of the reaction set, systemic thermodynamically driven error-correction could also be introduced. To achieve this, a dynamic covalent MBH reaction based on adducts with internal H-transfer capabilities was developed. By careful tuning of the substituents, rate accelerations of retro-MBH reactions of up to four orders of magnitude could be obtained. This study thus demonstrates how efficient self-sorting of catalytic systems can be achieved through an interplay of several complex emergent functionalities.


Subject(s)
Stereoisomerism , Catalysis
13.
Chemistry ; 26(67): 15654-15663, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33044767

ABSTRACT

Dual configurational and constitutional dynamics in systems based on enamine molecular switches has been systematically studied. pH-responsive moieties, such as 2-pyridyl and 2-quinolinyl units, were required on the "stator" part, also providing enamine stability through intramolecular hydrogen-bonding (IMHB) effects. Upon protonation or deprotonation, forward and backward switching could be rapidly achieved. Extension of the stator π-system in the 2-quinolinyl derivative provided a higher E-isomeric equilibrium ratio under neutral conditions, pointing to a means to achieve quantitative forward/backward isomerization processes. The "rotor" part of the enamine switches exhibited constitutional exchange ability with primary amines. Interestingly, considerably higher exchange rates were observed with amines containing ester groups, indicating potential stabilization of the transition state through IMHB. Acids, particularly BiIII , were found to efficiently catalyze the constitutional dynamic processes. In contrast, the enamine and the formed dynamic enamine system showed excellent stability under basic conditions. This coupled configurational and constitutional dynamics expands the scope of dynamic C-C and C-N bonds and potentiates further studies and applications in the fields of molecular machinery and systems chemistry.

14.
Chemistry ; 26(67): 15581-15588, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32427370

ABSTRACT

The reversibility of imine bonds has been exploited to great effect in the field of dynamic covalent chemistry, with applications such as preparation of functional systems, dynamic materials, molecular machines, and covalent organic frameworks. However, acid catalysis is commonly needed for efficient equilibration of imine mixtures. Herein, it is demonstrated that hydrogen bond donors such as thioureas and squaramides can catalyze the equilibration of dynamic imine systems under unprecedentedly mild conditions. Catalysis occurs in a range of solvents and in the presence of many sensitive additives, showing moderate to good rate accelerations for both imine metathesis and transimination with amines, hydrazines, and hydroxylamines. Furthermore, the catalyst proved simple to immobilize, introducing both reusability and extended control of the equilibration process.

15.
ChemistryOpen ; 9(1): 45-52, 2020 01.
Article in English | MEDLINE | ID: mdl-31921545

ABSTRACT

A new family of alkynylated, amphiphilic dendrimers consisting of amidoamine linkers connected to 5,5'-functionalized 2,2'-bipyridine cores has been developed and evaluated in the formation of metallodendrimers of different generations and in self-assembly protocols. A convergent synthetic strategy was applied to provide dumbbell-shaped amphiphilic dendrimers, where the 2,2'-bipyridine cores could be coordinated to FeII centers to afford corresponding metallodendrimers. The ability of the metallic- and non-metallic dendritic structures to self-assemble into functional supramolecular aggregates were furthermore evaluated in aqueous solution. Spherical aggregates with sizes of a few hundred nanometers were generally produced, where controlled disassembly of the metallodendrimers through decomplexation could be achieved.

16.
Angew Chem Int Ed Engl ; 59(9): 3434-3438, 2020 02 24.
Article in English | MEDLINE | ID: mdl-31863678

ABSTRACT

The nitroaldol reaction is demonstrated as an efficient dynamic covalent reaction in phosphate buffers at neutral pH. Rapid equilibration was recorded with pyridine-based aldehydes, and dynamic oligomerization could be achieved, leading to nitroaldol dynamers of up to 17 repeating units. The dynamers were applied in a coherent stimuli-responsive molecular system in which larger dynamers transiently existed out-of-equilibrium in a neutral aqueous system rich in formaldehyde, controlled by nitromethane.

17.
Catal Rev Sci Eng ; 62(1): 66-95, 2020.
Article in English | MEDLINE | ID: mdl-33716355

ABSTRACT

Implemented with the highly efficient concept of Dynamic Kinetic Resolution (DKR), dynamic covalent chemistry can be a useful strategy for the synthesis of enantioenriched compounds. This gives rise to dynamic covalent kinetic resolution (DCKR), a subset of DKR that over the last decades has emerged as increasingly fruitful, with many applications in asymmetric synthesis and catalysis. All DKR protocols are composed of two important parts: substrate racemization and asymmetric transformation, which can lead to yields of >50% with good enantiomeric excesses (ee) of the products. In DCKR systems, by utilizing reversible covalent reactions as the racemization strategy, the substrate enantiomers can be easily interconverted without the presence of any racemase or transition metal catalyst. Enzymes or other chiral catalysts can then be adopted for the resolution step, leading to products with high enantiopurities. This tutorial review focuses on the development of DCKR systems, based on different reversible reactions, and their applications in asymmetric synthesis.

18.
Mater Chem Front ; 4(2): 489-506, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-33791102

ABSTRACT

The rapid development of supramolecular polymer chemistry and constitutional dynamic chemistry over the last decades has made tremendous impact on the emergence of dynamic covalent polymers. These materials are formed through reversible covalent bonds, endowing them with adaptive and responsive features that have resulted in high interest throughout the community. Owing to their intriguing properties, such as self-healing, shape-memory effects, recyclability, degradability, stimuli-responsiveness, etc., the materials have found multiple uses in a wide range of areas. Of special interest is their increasing use for biomedical applications, and many examples have been demonstrated in recent years. These materials have thus been used for the recognition and sensing of biologically active compounds, for the modulation of enzyme activity, for gene delivery, and as materials for cell culture, delivery, and wound-dressing. In this review, some of these endeavors are discussed, highlighting the many advantages and unique properties of dynamic covalent polymers for use in biology and biomedicine.

19.
J Org Chem ; 84(22): 14520-14528, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31589042

ABSTRACT

Molecules, capable of fluorescence turn-on by light, are highly sought-after in spatio-temporal labeling, surface patterning, monitoring cellular and molecular events, and high-resolution fluorescence imaging. In this work, we report a fluorescence turn-on system based on photoinitiated intramolecular C-H insertion of azide into the neighboring aromatic ring. The azide-masked fluorogens were efficiently synthesized via a cascade nucleophilic aromatic substitution of perfluoroaryl azides with carbazoles. The scaffold also allows for derivatization with biological ligands, as exemplified with d-mannose in this study. This photoinitiated intramolecular transformation led to high yields, high photo-conversion efficiency, and well-separated wavelengths for photoactivation and fluorescence excitation. The mannose-derivatized structure enabled spatio-temporal activation and showed high contrast and signal amplification. Live cell imaging suggested that the mannose-tagged fluorogen was transported to the lysosomes.


Subject(s)
Azides/chemistry , Fluorescent Dyes/chemistry , Hydrocarbons, Fluorinated/chemistry , Fluorescent Dyes/chemical synthesis , Human Umbilical Vein Endothelial Cells/cytology , Humans , Ligands , Molecular Structure , Optical Imaging , Photochemical Processes
20.
Mater Chem Front ; 3(2): 251-256, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-31543961

ABSTRACT

A tri-component reaction, involving an electrophilically-activated perfluoroaryl azide, an enolizable aldehyde and an amine, reacts readily at room temperature without any catalysts in solvents including aqueous conditions to yield a stable amidine conjugate. The versatility of this reaction is demonstrated in the conjugation of an amino acid without prior protection of the carboxyl group, and in the synthesize antibiotic-nanoparticle conjugates.

SELECTION OF CITATIONS
SEARCH DETAIL