Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Biotechnol ; 40(4): 539-545, 2022 04.
Article in English | MEDLINE | ID: mdl-34711989

ABSTRACT

The ability to control translation of endogenous or exogenous RNAs in eukaryotic cells would facilitate a variety of biotechnological applications. Current strategies are limited by low fold changes in transgene output and the size of trigger RNAs (trRNAs). Here we introduce eukaryotic toehold switches (eToeholds) as modular riboregulators. eToeholds contain internal ribosome entry site sequences and form inhibitory loops in the absence of a specific trRNA. When the trRNA is present, eToeholds anneal to it, disrupting the inhibitory loops and allowing translation. Through optimization of RNA annealing, we achieved up to 16-fold induction of transgene expression in mammalian cells. We demonstrate that eToeholds can discriminate among viral infection status, presence or absence of gene expression and cell types based on the presence of exogenous or endogenous RNA transcripts.


Subject(s)
Protein Biosynthesis , RNA , Animals , Mammals/genetics , Protein Biosynthesis/genetics , RNA, Viral/genetics
2.
Mol Cell ; 65(6): 1109-1121.e3, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-28306506

ABSTRACT

The RNA-guided endonuclease Cas9 generates a double-strand break at DNA target sites complementary to the guide RNA and has been harnessed for the development of a variety of new technologies, such as genome editing. Here, we report the crystal structures of Campylobacter jejuni Cas9 (CjCas9), one of the smallest Cas9 orthologs, in complex with an sgRNA and its target DNA. The structures provided insights into a minimal Cas9 scaffold and revealed the remarkable mechanistic diversity of the CRISPR-Cas9 systems. The CjCas9 guide RNA contains a triple-helix structure, which is distinct from known RNA triple helices, thereby expanding the natural repertoire of RNA triple helices. Furthermore, unlike the other Cas9 orthologs, CjCas9 contacts the nucleotide sequences in both the target and non-target DNA strands and recognizes the 5'-NNNVRYM-3' as the protospacer-adjacent motif. Collectively, these findings improve our mechanistic understanding of the CRISPR-Cas9 systems and may facilitate Cas9 engineering.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Campylobacter jejuni/enzymology , Endonucleases/metabolism , Bacterial Proteins/chemistry , Binding Sites , CRISPR-Associated Proteins/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Endonucleases/chemistry , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/metabolism , Structure-Activity Relationship , Substrate Specificity
4.
Science ; 351(6271): 403-7, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26721684

ABSTRACT

Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD.


Subject(s)
CRISPR-Cas Systems , Dystrophin/genetics , Exons/genetics , Genetic Therapy/methods , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/therapy , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Dependovirus , Disease Models, Animal , Male , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/genetics , Sequence Deletion
5.
Science ; 351(6271): 407-411, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26721686

ABSTRACT

Frame-disrupting mutations in the DMD gene, encoding dystrophin, compromise myofiber integrity and drive muscle deterioration in Duchenne muscular dystrophy (DMD). Removing one or more exons from the mutated transcript can produce an in-frame mRNA and a truncated, but still functional, protein. In this study, we developed and tested a direct gene-editing approach to induce exon deletion and recover dystrophin expression in the mdx mouse model of DMD. Delivery by adeno-associated virus (AAV) of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonucleases coupled with paired guide RNAs flanking the mutated Dmd exon23 resulted in excision of intervening DNA and restored the Dmd reading frame in myofibers, cardiomyocytes, and muscle stem cells after local or systemic delivery. AAV-Dmd CRISPR treatment partially recovered muscle functional deficiencies and generated a pool of endogenously corrected myogenic precursors in mdx mouse muscle.


Subject(s)
Genetic Therapy/methods , Muscular Dystrophy, Duchenne/therapy , Satellite Cells, Skeletal Muscle/metabolism , Transduction, Genetic/methods , Animals , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Dependovirus , Disease Models, Animal , Exons , Frameshift Mutation , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Myocardium/metabolism , RNA, Messenger/genetics , Sequence Deletion
6.
Cell ; 162(5): 1113-26, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26317473

ABSTRACT

The RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets with a protospacer adjacent motif (PAM) and complementarity to the guide RNA. Recently, we harnessed Staphylococcus aureus Cas9 (SaCas9), which is significantly smaller than Streptococcus pyogenes Cas9 (SpCas9), to facilitate efficient in vivo genome editing. Here, we report the crystal structures of SaCas9 in complex with a single guide RNA (sgRNA) and its double-stranded DNA targets, containing the 5'-TTGAAT-3' PAM and the 5'-TTGGGT-3' PAM, at 2.6 and 2.7 Å resolutions, respectively. The structures revealed the mechanism of the relaxed recognition of the 5'-NNGRRT-3' PAM by SaCas9. A structural comparison of SaCas9 with SpCas9 highlighted both structural conservation and divergence, explaining their distinct PAM specificities and orthologous sgRNA recognition. Finally, we applied the structural information about this minimal Cas9 to rationally design compact transcriptional activators and inducible nucleases, to further expand the CRISPR-Cas9 genome editing toolbox.


Subject(s)
Bacterial Proteins/chemistry , Staphylococcus aureus/enzymology , Amino Acid Sequence , CRISPR-Cas Systems , Crystallography, X-Ray , DNA/chemistry , DNA/metabolism , Genetic Engineering , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/metabolism , Sequence Alignment , Streptococcus pyogenes/enzymology
7.
Nature ; 520(7546): 186-91, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25830891

ABSTRACT

The RNA-guided endonuclease Cas9 has emerged as a versatile genome-editing platform. However, the size of the commonly used Cas9 from Streptococcus pyogenes (SpCas9) limits its utility for basic research and therapeutic applications that use the highly versatile adeno-associated virus (AAV) delivery vehicle. Here, we characterize six smaller Cas9 orthologues and show that Cas9 from Staphylococcus aureus (SaCas9) can edit the genome with efficiencies similar to those of SpCas9, while being more than 1 kilobase shorter. We packaged SaCas9 and its single guide RNA expression cassette into a single AAV vector and targeted the cholesterol regulatory gene Pcsk9 in the mouse liver. Within one week of injection, we observed >40% gene modification, accompanied by significant reductions in serum Pcsk9 and total cholesterol levels. We further assess the genome-wide targeting specificity of SaCas9 and SpCas9 using BLESS, and demonstrate that SaCas9-mediated in vivo genome editing has the potential to be efficient and specific.


Subject(s)
CRISPR-Associated Proteins/metabolism , Genetic Engineering/methods , Genome/genetics , Staphylococcus aureus/enzymology , Animals , Base Sequence , CRISPR-Associated Proteins/genetics , Cholesterol/blood , Cholesterol/metabolism , Gene Targeting , Liver/metabolism , Liver/physiology , Male , Mice , Mice, Inbred C57BL , Proprotein Convertase 9 , Proprotein Convertases/biosynthesis , Proprotein Convertases/blood , Proprotein Convertases/deficiency , Proprotein Convertases/genetics , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/blood , Serine Endopeptidases/deficiency , Serine Endopeptidases/genetics , Staphylococcus aureus/genetics , Substrate Specificity
8.
Science ; 343(6175): 1246980, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24604203

ABSTRACT

Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-ß (IFN-ß). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases.


Subject(s)
Dendritic Cells/immunology , Gene-Environment Interaction , Host-Pathogen Interactions/genetics , Interferon Regulatory Factor-7/genetics , STAT Transcription Factors/genetics , Adult , Autoimmune Diseases/genetics , Communicable Diseases/genetics , Dendritic Cells/drug effects , Escherichia coli , Female , Genetic Loci , Genome-Wide Association Study , HEK293 Cells , Humans , Influenza A virus , Interferon-beta/pharmacology , Lipopolysaccharides/immunology , Male , Middle Aged , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Transcriptome , Young Adult
9.
Methods Mol Biol ; 1114: 269-77, 2014.
Article in English | MEDLINE | ID: mdl-24557909

ABSTRACT

The microbial CRISPR-Cas adaptive immune system can be harnessed to facilitate genome editing in eukaryotic cells (Cong L et al., Science 339, 819-823, 2013; Mali P et al., Science 339, 823-826, 2013). Here we describe a protocol for the use of the RNA-guided Cas9 nuclease from the Streptococcus pyogenes type II CRISPR system to achieve specific, scalable, and cost-efficient genome editing in mammalian cells.


Subject(s)
Genome , RNA Editing , Animals , Cell Line , Cloning, Molecular , DNA End-Joining Repair , Gene Order , Gene Targeting/methods , Genetic Vectors , Humans , Transfection , RNA, Small Untranslated
10.
Cell ; 156(5): 935-49, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24529477

ABSTRACT

The CRISPR-associated endonuclease Cas9 can be targeted to specific genomic loci by single guide RNAs (sgRNAs). Here, we report the crystal structure of Streptococcus pyogenes Cas9 in complex with sgRNA and its target DNA at 2.5 Å resolution. The structure revealed a bilobed architecture composed of target recognition and nuclease lobes, accommodating the sgRNA:DNA heteroduplex in a positively charged groove at their interface. Whereas the recognition lobe is essential for binding sgRNA and DNA, the nuclease lobe contains the HNH and RuvC nuclease domains, which are properly positioned for cleavage of the complementary and noncomplementary strands of the target DNA, respectively. The nuclease lobe also contains a carboxyl-terminal domain responsible for the interaction with the protospacer adjacent motif (PAM). This high-resolution structure and accompanying functional analyses have revealed the molecular mechanism of RNA-guided DNA targeting by Cas9, thus paving the way for the rational design of new, versatile genome-editing technologies.


Subject(s)
CRISPR-Associated Proteins/chemistry , Crystallography, X-Ray , Endonucleases/chemistry , RNA, Bacterial/chemistry , Streptococcus pyogenes/chemistry , Amino Acid Sequence , Bacteria/enzymology , CRISPR-Associated Proteins/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Endonucleases/metabolism , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , RNA, Bacterial/metabolism , Sequence Alignment , Streptococcus pyogenes/enzymology , Streptococcus pyogenes/metabolism , RNA, Small Untranslated
11.
Nat Protoc ; 8(11): 2281-2308, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24157548

ABSTRACT

Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Genetic Engineering/methods , Genome , Base Sequence , Cell Culture Techniques , Cell Line , DNA End-Joining Repair , DNA Mutational Analysis , DNA Repair , Deoxyribonucleases/chemistry , Deoxyribonucleases/genetics , Genotyping Techniques , HEK293 Cells , Humans , Molecular Sequence Data , Mutagenesis , Transfection
12.
Cell ; 154(6): 1380-9, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23992846

ABSTRACT

Targeted genome editing technologies have enabled a broad range of research and medical applications. The Cas9 nuclease from the microbial CRISPR-Cas system is targeted to specific genomic loci by a 20 nt guide sequence, which can tolerate certain mismatches to the DNA target and thereby promote undesired off-target mutagenesis. Here, we describe an approach that combines a Cas9 nickase mutant with paired guide RNAs to introduce targeted double-strand breaks. Because individual nicks in the genome are repaired with high fidelity, simultaneous nicking via appropriately offset guide RNAs is required for double-stranded breaks and extends the number of specifically recognized bases for target cleavage. We demonstrate that using paired nicking can reduce off-target activity by 50- to 1,500-fold in cell lines and to facilitate gene knockout in mouse zygotes without sacrificing on-target cleavage efficiency. This versatile strategy enables a wide variety of genome editing applications that require high specificity.


Subject(s)
DNA Breaks, Double-Stranded , Gene Targeting/methods , Genome , Animals , Base Sequence , Mice , Molecular Sequence Data , Streptococcus pyogenes/enzymology , Streptococcus pyogenes/genetics , Zygote/metabolism , RNA, Small Untranslated
13.
Nat Biotechnol ; 31(9): 827-32, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23873081

ABSTRACT

The Streptococcus pyogenes Cas9 (SpCas9) nuclease can be efficiently targeted to genomic loci by means of single-guide RNAs (sgRNAs) to enable genome editing. Here, we characterize SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects. Our study evaluates >700 guide RNA variants and SpCas9-induced indel mutation levels at >100 predicted genomic off-target loci in 293T and 293FT cells. We find that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner, sensitive to the number, position and distribution of mismatches. We also show that SpCas9-mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification. To facilitate mammalian genome engineering applications, we provide a web-based software tool to guide the selection and validation of target sequences as well as off-target analyses.


Subject(s)
DNA/genetics , Deoxyribonucleases/genetics , Genetic Engineering/methods , Transcription Factors/genetics , Bacterial Proteins/genetics , Base Pair Mismatch , Base Sequence , Molecular Sequence Data , Streptococcus pyogenes/genetics , RNA, Small Untranslated
14.
Science ; 339(6121): 819-23, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23287718

ABSTRACT

Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.


Subject(s)
CRISPR-Cas Systems , DNA Cleavage , Genetic Engineering/methods , Genome/genetics , Inverted Repeat Sequences/genetics , Microarray Analysis/methods , Animals , Base Sequence , DNA/chemistry , DNA/genetics , Genetic Loci , Humans , Mice , Molecular Sequence Data , Mutagenesis , RNA/chemistry , RNA/genetics , Recombinational DNA Repair , Streptococcus pyogenes/enzymology , Streptococcus pyogenes/genetics
15.
Environ Microbiol Rep ; 2(3): 373-80, 2010 Jun.
Article in English | MEDLINE | ID: mdl-23766109

ABSTRACT

Pseudomonas putida KT2440 encodes 23 alternative sigma factors. The fliA gene, which encodes σ(28) , is in a cluster with other genes involved in flagella biosynthesis and chemotaxis. Reverse transcriptase-PCR revealed that this cluster is comprised of four independent transcriptional units: flhAF, fleNfliA, cheYZA and cheBmotAB. We generated a nonpolar fliA mutant by homologous recombination and tested its motility, adhesion to biotic and abiotic surfaces, and responses to various stress conditions. The mutant strain was nonmotile and exhibited decreased capacity to bind to corn seeds, although its ability to colonize the rhizosphere of plants was unaffected. The mutant was also affected in binding to abiotic surfaces and its ability to form biofilms decreased by almost threefold. In the fliA mutant background expression of 25 genes was affected: two genes were upregulated and 23 genes were downregulated. In addition to a number of motility and chemotaxis genes, the fliA gene product is also necessary for the expression of some genes potentially involved in amino acid utilization or stress responses; however, we were unable to assign specific phenotypes linked to these genes since the fliA mutant used the same range of amino acids as the parental strain, and was as tolerant as the wild type to stress imposed by heat, antibiotics, NaCl, sodium dodecyl sulfate, H2 O2 and benzoate. Based on the sequence alignment of promoters recognized by FliA and genome in silico analysis, we propose that P. putidaσ(28) recognizes a TCAAG-t-N12 -GCCGATA consensus sequence located between -34 and -8 and that this sequence is preferentially associated with an AT-rich upstream region.

16.
Appl Environ Microbiol ; 72(8): 5239-45, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16885271

ABSTRACT

Short nucleotide sequence repetitions in DNA can provide selective benefits and also can be a source of genetic instability arising from deletions guided by pairing between misaligned strands. These findings raise the question of how the frequency of deletion mutations is influenced by the length of sequence repetitions and by the distance between them. An experimental approach to this question was presented by the heat-sensitive phenotype conferred by pcaG1102, a 30-bp deletion in one of the structural genes for Acinetobacter baylyi protocatechuate 3,4-dioxygenase, which is required for growth with quinate. The original pcaG1102 deletion appears to have been guided by pairing between slipped DNA strands from nearby repeated sequences in wild-type pcaG. Placement of an in-phase termination codon between the repeated sequences in pcaG prevents growth with quinate and permits selection of sequence-guided deletions that excise the codon and permit quinate to be used as a growth substrate at room temperature. Natural transformation facilitated introduction of 68 different variants of the wild-type repeat structure within pcaG into the A. baylyi chromosome, and the frequency of deletion between the repetitions was determined with a novel method, precision plating. The deletion frequency increases with repeat length, decreases with the distance between repeats, and requires a minimum amount of similarity to occur at measurable rates. Deletions occurred in a recA-deficient background. Their frequency was unaffected by deficiencies in mutS and was increased by inactivation of recG.


Subject(s)
Acinetobacter/genetics , DNA, Bacterial/genetics , DNA, Single-Stranded/genetics , Mutation , Sequence Deletion , Acinetobacter/enzymology , Acinetobacter/growth & development , Base Sequence , Culture Media , DNA, Bacterial/metabolism , DNA, Single-Stranded/metabolism , Escherichia coli/genetics , Plasmids/genetics , Protocatechuate-3,4-Dioxygenase/genetics , Protocatechuate-3,4-Dioxygenase/metabolism , Repetitive Sequences, Nucleic Acid/genetics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...