Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 662: 160-170, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38340515

ABSTRACT

Developing a highly efficient strategy for the stabilization of the solid-liquid interface is a persistent pursuit for researchers. Herein, porous ionic liquids based on UiO-66 (Zr) porous materials were synthesized and applied to the selective desulfurization catalysis, which integrates the permanent pores of porous solids with the exceptional properties of ionic liquids. Results show that porous ionic liquids possess high activity and selectivity for dibenzothiophene. Experimental analysis and density functional theory calculations revealed that the ionic liquids moiety served as an extractant to enrich dibenzothiophene into the porous ionic liquids phase through the π···π and CH···π interactions. Additionally, the electrostatic solvent effect in the porous ionic liquids contributes to the stabilization solid-liquid interface, which was favorable for UiO-66 moiety to catalytically activate hydrogen peroxide (H2O2) to generate ·OH radicals, and subsequently oxidized dibenzothiophene to the corresponding sulfone. It is hoped that the development of porous ionic liquids could pave a new route to the stabilization of the solid-liquid interface for catalytic oxidation.

2.
Chem Sci ; 15(3): 795-831, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38239692

ABSTRACT

The rapid accumulation of plastic waste has led to a severe environmental crisis and a noticeable imbalance between manufacturing and recycling. Fortunately, chemical upgradation of plastic waste holds substantial promise for addressing these challenges posed by white pollution. During plastic upcycling and recycling, the key challenge is to activate and cleave the inert C-C bonds in plastic waste. Therefore, this perspective delves deeper into the upcycling and recycling of polyolefins from the angle of C-C activation-cleavage. We illustrate the importance of C-C bond activation in polyolefin depolymerization and integrate molecular-level catalysis, active site modulation, reaction networks and mechanisms to achieve precise activation-cleavage of C-C bonds. Notably, we draw potential inspiration from the accumulated wisdom of related fields, such as C-C bond activation in lignin chemistry, alkane dehydrogenation chemistry, C-Cl bond activation in CVOC removal, and C-H bond activation, to influence the landscape of plastic degradation through cross-disciplinary perspectives. Consequently, this perspective offers better insights into existing catalytic technologies and unveils new prospects for future advancements in recycling and upcycling of plastic.

3.
Phys Chem Chem Phys ; 26(3): 2509-2518, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38170798

ABSTRACT

Single-atom catalysts (SACs) have attracted great attention for various chemical reactions because of their strong activity, high metal utilization ratio, and low cost. Here, by using the density functional theory (DFT) method, the stability of a single VIII-group metal atom (M = Ni, Pd, Pt) anchored on the defective hexagonal boron nitride (h-BN) sheet and its possible application in oxidative desulfurization (ODS) are investigated. Calculations show that the stability of the single M atom embedded in the h-BN surface with B and N vacancies is strikingly enhanced compared to that on the perfect h-BN surface. The catalytic activities of the defective h-BN-supported single metal atom are further studied by the activation of molecular oxygen and subsequent oxidation of dibenzothiophene (DBT). O2 is activated to the super-oxo state with large interaction energies on three M/VN surfaces. However, among the three M/VB surfaces, only Pt/VB performs efficient activation of O2. The oxidation of DBT proceeds in two steps; the rate-determining step is the initial step, in which activated O2 oxidizes DBT to produce sulfoxide. By comparing the energy barrier in the first reaction step, both Ni/VN and Pt/VB are revealed as promising candidates for the ODS reaction.

4.
Inorg Chem ; 62(43): 17883-17893, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37842934

ABSTRACT

The exploitation of highly efficient and cost-effective selective adsorbents for adsorptive desulfurization (ADS) remains a challenge. Fortunately, single-atom adsorbents (SAAs) characterized by maximized atom utilization and atomically dispersed adsorption sites have great potential to solve this problem as an emerging class of adsorption materials. Herein, aiming at improving the efficiency of ADS performance via the economical and feasible strategy, the desirable SAAs have been fabricated by uniformly anchoring aluminum (Al) atoms on hexagonal boron nitride nanofibers (BNNF) via an in situ pyrolysis method. Remarkably, Al-BN-1.0 exhibited a superior adsorption capacity of 46.1 mg S/g adsorbent for dibenzothiophene, with a 45% increase in adsorption capacity compared to the pristine BNNF. Additionally, it demonstrated excellent adsorption of other thiophene sulfides. Moreover, the ADS mechanisms have been investigated through special adsorption experiments combined with density functional theory (DFT) calculations. It was demonstrated that the superior ADS performance and selectivity of Al-BN-1.0 originate from the sulfur-aluminum (S-Al) and π-π interactions cooperating synergistically. This work would cast light on a novel fabrication strategy for the SAAs based on the two-dimensional material with a tunable metal site configurations and densities for varied selective adsorption and separation.

5.
J Colloid Interface Sci ; 652(Pt B): 1836-1847, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37683411

ABSTRACT

Porous ionic liquids (PILs) offer a distinctive combination of liquid-like fluidity and solid porosity, making them well-suited for various applications including separation, catalysis, and energy storage. Nevertheless, the design limitations and complex synthesis processes have hindered the development of PILs. Here, the one-step coupling neutralization reaction (OCNR) method has been first proposed for the controllable synthesis of functionalized protic porous ionic liquids (PPILs). Specifically, three types of PPILs have been synthesized based on tuning the position of the corona amino functional groups. The results indicate the crucial role of protic ion pairs in the formation of pure liquid PPILs with low viscosity. The extraction efficiency has obviously increased after introducing the porous materials from 38.5% to 51.9%. The results showed PPILs play good extraction-adsorption coupled desulfurization (EADS) performance. The density functional theory (DFT) results show that both the protic ion pairs and the porous structure have significant roles in EADS, with the former offering CH···π interactions, while the latter provides hydrogen bonding (CH···O) interactions. Ultimately, the strategy simplifies the synthesis process, providing a new idea for the directional design of low-viscosity PILs with specific functions.

6.
Inorg Chem ; 62(12): 4883-4893, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36912429

ABSTRACT

Single-atom adsorbents (SAAs) featuring maximized atom utilization and uniform isolated adsorption sites have aroused extensive research interest in recent years as a novel class of adsorption materials research. Nevertheless, it is still challenging to gain a fundamental understanding of the complicated behaviors of SAAs for adsorbing thiophenic compounds (THs). Herein, this work systematically investigated the mechanisms of adsorption desulfurization (ADS) over a single group IIIA metal atom (Ga, In, and Tl) anchored on hexagonal boron nitride nanosheets (BNNSs) via density functional theory (DFT) calculations. First, all the possible doping sites have been considered and their stabilities have been evaluated by the doped energy. DFT calculations reveal that metal atoms prefer to substitute B atoms on BNNSs rather than N atoms. Additionally, SAAs all exhibit considerably enhanced adsorption capacity for THs primarily by the sulfur-metal (S-M) bond with π-π interactions maintained. Among them, In-atom-based SAAs would be adequate to provide the highest adsorption energy (In_cen_B, -40.1 kcal mol-1). Furthermore, from the perspective of adsorption energy, the SAAs show superior selectivity to THs than aromatic compounds due to the newly formed S-M bond. We hope that our work will manifest the design and application of SAAs in the field of ADS and shed light on a new strategy for fabricating SAAs based on BNNSs.

7.
Nanomaterials (Basel) ; 13(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36770545

ABSTRACT

Boron nitride (BN) materials, graphene-like materials, are known as one of the most promising inorganic materials of this century because of their unique structures and properties [...].

8.
Nanomaterials (Basel) ; 12(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35745384

ABSTRACT

Single atom adsorbents (SAAs) are a novel class of materials that have great potential in various fields, especially in the field of adsorptive desulfurization. However, it is still challenging to gain a fundamental understanding of the complicated behaviors on SAAs for adsorbing thiophenic compounds, such as 1-Benzothiophene (BT), Dibenzothiophene (DBT), and 4,6-Dimethyldibenzothiophene (4,6-DMDBT). Herein, we investigated the mechanisms of adsorptive desulfurization over a single Ag atom supported on defective hexagonal boron nitride nanosheets via density functional theory calculations. The Ag atom can be anchored onto three typical sites on the pristine h-BN, including the monoatomic defect vacancy (B-vacancy and N-vacancy) and the boron-nitrogen diatomic defect vacancy (B-N-divacancy). These three Ag-doped hexagonal boron nitride nanosheets all exhibit enhanced adsorption capacity for thiophenic compounds primarily by the S-Ag bond with π-π interaction maintaining. Furthermore, from the perspective of interaction energy, all three SAAs show a high selectivity to 4,6-DMDBT with the strong interaction energy (-33.9 kcal mol-1, -29.1 kcal mol-1, and -39.2 kcal mol-1, respectively). Notably, a little charge transfer demonstrated that the dominant driving force of such S-Ag bond is electrostatic interaction rather than coordination effect. These findings may shed light on the principles for modeling and designing high-performance and selective SAAs for adsorptive desulfurization.

9.
RSC Adv ; 10(70): 42706-42717, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-35514891

ABSTRACT

Carbon dioxide (CO2) emissions intensify the greenhouse effect so much that its capture and separation are needed. Porous liquids, possessing both the porous properties of solids and the fluidity of liquids, exhibit a wide range of applications in absorbing CO2, but the mechanism of gas capture and separation demands in-depth understanding. To this end, we provide a molecular perspective of gas absorption in a porous liquid composed of porous organic cages dissolved in a size-excluded solvent, hexachloropropene, by density functional theory for the first time. In this work, different conformations were considered comprehensively for three representative porous organic cages and molecules. Results show that chloroform, compared to CO2, tends to enter the cage due to stronger C-H⋯π interaction and the optimal capacity of each cage to absorb CO2 through hydrogen bonding and π-π interaction is 4, 2 and 4 equivalents, respectively. We hope that these discoveries will promote the synthesis of similar porous liquids that are used to capture and separate gases.

SELECTION OF CITATIONS
SEARCH DETAIL
...