Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Am J Surg Pathol ; 43(10): 1384-1391, 2019 10.
Article in English | MEDLINE | ID: mdl-31219820

ABSTRACT

A major breakthrough in the classification of soft tissue tumors has been the recent identification of NTRK-fusion related neoplasms which are amenable to highly effective targeted therapies. Despite these therapeutic opportunities, diagnostic challenges have emerged in recognizing tumors characterized by protein kinase fusions, as they are associated with a wide morphologic spectrum, variable risk of malignancy and a rather nonspecific immunoprofile. As such, NTRK-related fusions may occur in infantile fibrosarcoma, lipofibromatosis-like neural tumors (LPF-NTs), tumors resembling malignant peripheral nerve sheath tumors, etc. Triggered by an index case resembling LPF-NT but harboring RET gene rearrangement, we investigated our files for cases showing RET gene abnormalities to establish their clinicopathologic features. Tumors were tested with a combination of targeted RNA sequencing and fluorescence in situ hybridization methods. Six cases with RET gene rearrangements were identified, all except 1 occurred in children, including 4 infants. Their morphologic spectrum was quite diverse, but closely reproduced the phenotype of NTRK-fusion-positive tumors, including LPF-NTs (n=3), infantile fibrosarcoma-like tumor (n=2) and malignant peripheral nerve sheath tumor-like (n=1). Three cases showed coexpression of S100 and CD34, whereas the remaining 3 had a nonspecific immunoprofile. The tumors ranged morphologically and clinically from benign to highly malignant. None of the LPF-NT cases recurred, whereas 2 patients with malignant histology had a highly aggressive course with distant metastases to lung and other viscera. By targeted RNA sequencing these tumors harbored RET fusions with an identical break in exon 12, which retains the tyrosine kinase domain in the fusion oncoprotein and involving various gene partners (CLIP2, CCDC6, SPECC1L, MYH10, and NCOA4). Our results suggest that RET fusion-positive neoplasms share a similar phenotypic spectrum with the NTRK-positive tumors, displaying either fibroblastic or neural-like differentiation, and spanning a wide spectrum of clinical behavior. These findings open new avenues for targeted therapy with RET inhibitors currently available in clinical trials.


Subject(s)
Biomarkers, Tumor/genetics , Gene Fusion , Gene Rearrangement , Proto-Oncogene Proteins c-ret/genetics , Receptors, Nerve Growth Factor/genetics , Sarcoma/genetics , Soft Tissue Neoplasms/genetics , Adolescent , Cell Differentiation , Female , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prognosis , Retrospective Studies , Sarcoma/classification , Sarcoma/secondary , Sarcoma/therapy , Soft Tissue Neoplasms/classification , Soft Tissue Neoplasms/pathology , Soft Tissue Neoplasms/therapy
3.
Cell Rep ; 22(9): 2455-2468, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29490280

ABSTRACT

Uveal melanoma (UM) is characterized by mutually exclusive activating mutations in GNAQ, GNA11, CYSLTR2, and PLCB4, four genes in a linear pathway to activation of PLCß in almost all tumors and loss of BAP1 in the aggressive subset. We generated mice with melanocyte-specific expression of GNA11Q209L with and without homozygous Bap1 loss. The GNA11Q209L mice recapitulated human Gq-associated melanomas, and they developed pigmented neoplastic lesions from melanocytes of the skin and non-cutaneous organs, including the eye and leptomeninges, as well as at atypical sites, including the lymph nodes and lungs. The addition of Bap1 loss increased tumor proliferation and cutaneous melanoma size. Integrative transcriptome analysis of human and murine melanomas identified RasGRP3 to be specifically expressed in GNAQ/GNA11-driven melanomas. In human UM cell lines and murine models, RasGRP3 is specifically required for GNAQ/GNA11-driven Ras activation and tumorigenesis. This implicates RasGRP3 as a critical node and a potential target in UM.


Subject(s)
GTP-Binding Protein alpha Subunits/metabolism , Melanocytes/metabolism , Melanoma/metabolism , Melanoma/pathology , Signal Transduction , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology , ras Guanine Nucleotide Exchange Factors/metabolism , Animals , Cell Line, Tumor , Cell Lineage/drug effects , Cell Proliferation/drug effects , Central Nervous System Neoplasms/pathology , Disease Models, Animal , Female , Humans , Male , Melanocytes/drug effects , Melanocytes/pathology , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Neoplasm Invasiveness , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Skin Neoplasms/pathology , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism
4.
J Clin Invest ; 128(4): 1442-1457, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29360641

ABSTRACT

Aberrant activation of MAPK signaling leads to the activation of oncogenic transcriptomes. How MAPK signaling is coupled with the transcriptional response in cancer is not fully understood. In 2 MAPK-activated tumor types, gastrointestinal stromal tumor and melanoma, we found that ETV1 and other Pea3-ETS transcription factors are critical nuclear effectors of MAPK signaling that are regulated through protein stability. Expression of stabilized Pea3-ETS factors can partially rescue the MAPK transcriptome and cell viability after MAPK inhibition. To identify the players involved in this process, we performed a pooled genome-wide RNAi screen using a fluorescence-based ETV1 protein stability sensor and identified COP1, DET1, DDB1, UBE3C, PSMD4, and COP9 signalosome members. COP1 or DET1 loss led to decoupling between MAPK signaling and the downstream transcriptional response, where MAPK inhibition failed to destabilize Pea3 factors and fully inhibit the MAPK transcriptome, thus resulting in decreased sensitivity to MAPK pathway inhibitors. We identified multiple COP1 and DET1 mutations in human tumors that were defective in the degradation of Pea3-ETS factors. Two melanoma patients had de novo DET1 mutations arising after vemurafenib treatment. These observations indicate that MAPK signaling-dependent regulation of Pea3-ETS protein stability is a key signaling node in oncogenesis and therapeutic resistance to MAPK pathway inhibition.


Subject(s)
Carrier Proteins/metabolism , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , Melanoma/metabolism , Mutation , Proto-Oncogene Proteins c-ets/metabolism , Transcriptome/drug effects , Ubiquitin-Protein Ligases/metabolism , Vemurafenib/pharmacology , Adenovirus E1A Proteins/genetics , Adenovirus E1A Proteins/metabolism , Animals , Carrier Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , MAP Kinase Signaling System/genetics , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Mice , Mice, SCID , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-ets/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/genetics , Ubiquitin-Protein Ligases/genetics , Xenograft Model Antitumor Assays
5.
Cancer Discov ; 8(2): 234-251, 2018 02.
Article in English | MEDLINE | ID: mdl-29162563

ABSTRACT

The cellular context that integrates upstream signaling and downstream nuclear response dictates the oncogenic behavior and shapes treatment responses in distinct cancer types. Here, we uncover that in gastrointestinal stromal tumor (GIST), the forkhead family member FOXF1 directly controls the transcription of two master regulators, KIT and ETV1, both required for GIST precursor-interstitial cells of Cajal lineage specification and GIST tumorigenesis. Further, FOXF1 colocalizes with ETV1 at enhancers and functions as a pioneer factor that regulates the ETV1-dependent GIST lineage-specific transcriptome through modulation of the local chromatin context, including chromatin accessibility, enhancer maintenance, and ETV1 binding. Functionally, FOXF1 is required for human GIST cell growth in vitro and murine GIST tumor growth and maintenance in vivo The simultaneous control of the upstream signaling and nuclear response sets up a unique regulatory paradigm and highlights the critical role of FOXF1 in enforcing the GIST cellular context for highly lineage-restricted clinical behavior and treatment response.Significance: We uncover that FOXF1 defines the core-regulatory circuitry in GIST through both direct transcriptional regulation and pioneer factor function. The unique and simultaneous control of signaling and transcriptional circuitry by FOXF1 sets up an enforced transcriptional addiction to FOXF1 in GIST, which can be exploited diagnostically and therapeutically. Cancer Discov; 8(2); 234-51. ©2017 AACR.See related commentary by Lee and Duensing, p. 146This article is highlighted in the In This Issue feature, p. 127.


Subject(s)
Forkhead Transcription Factors/genetics , Gastrointestinal Stromal Tumors/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Animals , Biomarkers, Tumor , Cell Cycle/genetics , Cell Line, Tumor , Cell Survival/genetics , DNA-Binding Proteins/genetics , Enhancer Elements, Genetic , Gastrointestinal Stromal Tumors/metabolism , Gene Expression Profiling , Heterografts , Humans , Protein Binding , Signal Transduction , Transcription Factors/genetics , Transcriptome
6.
Cancer Cell ; 32(6): 792-806.e7, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29153843

ABSTRACT

Prostate cancer exhibits a lineage-specific dependence on androgen signaling. Castration resistance involves reactivation of androgen signaling or activation of alternative lineage programs to bypass androgen requirement. We describe an aberrant gastrointestinal-lineage transcriptome expressed in ∼5% of primary prostate cancer that is characterized by abbreviated response to androgen-deprivation therapy and in ∼30% of castration-resistant prostate cancer. This program is governed by a transcriptional circuit consisting of HNF4G and HNF1A. Cistrome and chromatin analyses revealed that HNF4G is a pioneer factor that generates and maintains enhancer landscape at gastrointestinal-lineage genes, independent of androgen-receptor signaling. In HNF4G/HNF1A-double-negative prostate cancer, exogenous expression of HNF4G at physiologic levels recapitulates the gastrointestinal transcriptome, chromatin landscape, and leads to relative castration resistance.


Subject(s)
Drug Resistance, Neoplasm/physiology , Gene Expression Regulation, Neoplastic/physiology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Animals , Heterografts , Humans , Male , Mice , Mice, SCID , Prostatic Neoplasms, Castration-Resistant/pathology , Trypsin Inhibitor, Kazal Pancreatic/biosynthesis
7.
Cancer Res ; 77(14): 3758-3765, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28539323

ABSTRACT

Gastrointestinal stromal tumor (GIST) is the most common subtype of sarcoma. Despite clinical advances in the treatment of KIT/PDGFRA-mutant GIST, similar progress against KIT/PDGFRA wild-type GIST, including mutant BRAF-driven tumors, has been limited by a lack of model systems. ETV1 is a master regulator in the intestinal cells of Cajal (ICC), thought to be the cells of origin of GIST. Here, we present a model in which the ETV1 promoter is used to specifically and inducibly drive Cre recombinase in ICC as a strategy to study GIST pathogenesis. Using a conditional allele for BrafV600E , a mutation observed in clinical cases of GIST, we observed that BrafV600E activation was sufficient to drive ICC hyperplasia but not GIST tumorigenesis. In contrast, combining BrafV600E activation with Trp53 loss was sufficient to drive both ICC hyperplasia and formation of multifocal GIST-like tumors in the mouse gastrointestinal tract with 100% penetrance. This mouse model of sporadic GIST model was amenable to therapeutic intervention, and it recapitulated clinical responses to RAF inhibition seen in human GIST. Our work offers a useful in vivo model of human sporadic forms of BRAF-mutant GIST to help unravel its pathogenesis and therapeutic response to novel experimental agents. Cancer Res; 77(14); 3758-65. ©2017 AACR.


Subject(s)
DNA-Binding Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Transcription Factors/genetics , Animals , Disease Models, Animal , Gastrointestinal Neoplasms/enzymology , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Gastrointestinal Stromal Tumors/enzymology , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Mice , Mice, SCID , Mutation
8.
Science ; 352(6287): 844-9, 2016 May 13.
Article in English | MEDLINE | ID: mdl-27174990

ABSTRACT

Several types of pediatric cancers reportedly contain high-frequency missense mutations in histone H3, yet the underlying oncogenic mechanism remains poorly characterized. Here we report that the H3 lysine 36-to-methionine (H3K36M) mutation impairs the differentiation of mesenchymal progenitor cells and generates undifferentiated sarcoma in vivo. H3K36M mutant nucleosomes inhibit the enzymatic activities of several H3K36 methyltransferases. Depleting H3K36 methyltransferases, or expressing an H3K36I mutant that similarly inhibits H3K36 methylation, is sufficient to phenocopy the H3K36M mutation. After the loss of H3K36 methylation, a genome-wide gain in H3K27 methylation leads to a redistribution of polycomb repressive complex 1 and de-repression of its target genes known to block mesenchymal differentiation. Our findings are mirrored in human undifferentiated sarcomas in which novel K36M/I mutations in H3.1 are identified.


Subject(s)
Bone Neoplasms/genetics , Carcinogenesis/genetics , Chondroblastoma/genetics , Histones/genetics , Mesenchymal Stem Cells/pathology , Neoplastic Stem Cells/pathology , Sarcoma/genetics , Animals , Bone Neoplasms/pathology , Carcinogenesis/pathology , Child, Preschool , Chondroblastoma/pathology , Gene Expression Regulation, Neoplastic , Histones/metabolism , Humans , Lysine/genetics , Mesenchymal Stem Cells/metabolism , Methionine/genetics , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Mutation , Mutation, Missense , Neoplastic Stem Cells/metabolism , Nucleosomes/genetics , Polycomb Repressive Complex 1/metabolism , Sarcoma/pathology
9.
Nature ; 526(7573): 453-7, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26444240

ABSTRACT

Activation of oncogenes by mechanisms other than genetic aberrations such as mutations, translocations, or amplifications is largely undefined. Here we report a novel isoform of the anaplastic lymphoma kinase (ALK) that is expressed in ∼11% of melanomas and sporadically in other human cancer types, but not in normal tissues. The novel ALK transcript initiates from a de novo alternative transcription initiation (ATI) site in ALK intron 19, and was termed ALK(ATI). In ALK(ATI)-expressing tumours, the ATI site is enriched for H3K4me3 and RNA polymerase II, chromatin marks characteristic of active transcription initiation sites. ALK(ATI) is expressed from both ALK alleles, and no recurrent genetic aberrations are found at the ALK locus, indicating that the transcriptional activation is independent of genetic aberrations at the ALK locus. The ALK(ATI) transcript encodes three proteins with molecular weights of 61.1, 60.8 and 58.7 kilodaltons, consisting primarily of the intracellular tyrosine kinase domain. ALK(ATI) stimulates multiple oncogenic signalling pathways, drives growth-factor-independent cell proliferation in vitro, and promotes tumorigenesis in vivo in mouse models. ALK inhibitors can suppress the kinase activity of ALK(ATI), suggesting that patients with ALK(ATI)-expressing tumours may benefit from ALK inhibitors. Our findings suggest a novel mechanism of oncogene activation in cancer through de novo alternative transcription initiation.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Neoplasms/enzymology , Neoplasms/genetics , Receptor Protein-Tyrosine Kinases/genetics , Transcription Initiation, Genetic , Alleles , Anaplastic Lymphoma Kinase , Animals , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , Female , HEK293 Cells , Histones/chemistry , Histones/metabolism , Humans , Introns/genetics , Isoenzymes/antagonists & inhibitors , Isoenzymes/biosynthesis , Isoenzymes/chemistry , Isoenzymes/genetics , Lysine/metabolism , Methylation , Mice , Molecular Sequence Data , Molecular Weight , NIH 3T3 Cells , Neoplasms/drug therapy , Oncogenes/genetics , Protein Structure, Tertiary/genetics , RNA Polymerase II/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/biosynthesis , Receptor Protein-Tyrosine Kinases/chemistry , Signal Transduction
10.
Cancer Discov ; 5(3): 304-15, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25572173

ABSTRACT

UNLABELLED: Gastrointestinal stromal tumor (GIST), originating from the interstitial cells of Cajal (ICC), is characterized by frequent activating mutations of the KIT receptor tyrosine kinase. Despite the clinical success of imatinib, which targets KIT, most patients with advanced GIST develop resistance and eventually die of the disease. The ETS family transcription factor ETV1 is a master regulator of the ICC lineage. Using mouse models of Kit activation and Etv1 ablation, we demonstrate that ETV1 is required for GIST initiation and proliferation in vivo, validating it as a therapeutic target. We further uncover a positive feedback circuit where MAP kinase activation downstream of KIT stabilizes the ETV1 protein, and ETV1 positively regulates KIT expression. Combined targeting of ETV1 stability by imatinib and MEK162 resulted in increased growth suppression in vitro and complete tumor regression in vivo. The combination strategy to target ETV1 may provide an effective therapeutic strategy in GIST clinical management. SIGNIFICANCE: ETV1 is a lineage-specific oncogenic transcription factor required for the growth and survival of GIST. We describe a novel strategy of targeting ETV1 protein stability by the combination of MEK and KIT inhibitors that synergistically suppress tumor growth. This strategy has the potential to change first-line therapy in GIST clinical management.


Subject(s)
Antineoplastic Agents/pharmacology , DNA-Binding Proteins/metabolism , Gastrointestinal Stromal Tumors/metabolism , Mitogen-Activated Protein Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Drug Synergism , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Tumor Burden/drug effects , Tumor Burden/genetics , Xenograft Model Antitumor Assays
11.
Nat Genet ; 46(11): 1227-32, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25240281

ABSTRACT

Malignant peripheral nerve sheath tumors (MPNSTs) represent a group of highly aggressive soft-tissue sarcomas that may occur sporadically, in association with neurofibromatosis type I (NF1 associated) or after radiotherapy. Using comprehensive genomic approaches, we identified loss-of-function somatic alterations of the Polycomb repressive complex 2 (PRC2) components (EED or SUZ12) in 92% of sporadic, 70% of NF1-associated and 90% of radiotherapy-associated MPNSTs. MPNSTs with PRC2 loss showed complete loss of trimethylation at lysine 27 of histone H3 (H3K27me3) and aberrant transcriptional activation of multiple PRC2-repressed homeobox master regulators and their regulated developmental pathways. Introduction of the lost PRC2 component in a PRC2-deficient MPNST cell line restored H3K27me3 levels and decreased cell growth. Additionally, we identified frequent somatic alterations of CDKN2A (81% of all MPNSTs) and NF1 (72% of non-NF1-associated MPNSTs), both of which significantly co-occur with PRC2 alterations. The highly recurrent and specific inactivation of PRC2 components, NF1 and CDKN2A highlights their critical and potentially cooperative roles in MPNST pathogenesis.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Histones/metabolism , Neurilemmoma/genetics , Polycomb Repressive Complex 2/genetics , Base Sequence , Cell Line, Tumor , Chromatin Immunoprecipitation , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Methylation , DNA Primers/genetics , Gene Expression Profiling , Genomics/methods , Humans , Immunohistochemistry , Molecular Sequence Data , Mutation/genetics , Neoplasm Proteins , Neurofibromin 1/genetics , Polycomb Repressive Complex 2/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Transcription Factors
12.
Cell ; 159(1): 176-187, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25201530

ABSTRACT

The lack of in vitro prostate cancer models that recapitulate the diversity of human prostate cancer has hampered progress in understanding disease pathogenesis and therapy response. Using a 3D organoid system, we report success in long-term culture of prostate cancer from biopsy specimens and circulating tumor cells. The first seven fully characterized organoid lines recapitulate the molecular diversity of prostate cancer subtypes, including TMPRSS2-ERG fusion, SPOP mutation, SPINK1 overexpression, and CHD1 loss. Whole-exome sequencing shows a low mutational burden, consistent with genomics studies, but with mutations in FOXA1 and PIK3R1, as well as in DNA repair and chromatin modifier pathways that have been reported in advanced disease. Loss of p53 and RB tumor suppressor pathway function are the most common feature shared across the organoid lines. The methodology described here should enable the generation of a large repertoire of patient-derived prostate cancer lines amenable to genetic and pharmacologic studies.


Subject(s)
Culture Techniques , Organoids , Prostatic Neoplasms/pathology , Heterografts , Humans , Male , Neoplasm Metastasis/pathology , Organoids/pathology , Pharmacology/methods , Tumor Suppressor Proteins/metabolism
13.
Science ; 336(6080): 474-7, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22539722

ABSTRACT

Protein acetylation emerged as a key regulatory mechanism for many cellular processes. We used genetic analysis of Saccharomyces cerevisiae to identify Esa1 as a histone acetyltransferase required for autophagy. We further identified the autophagy signaling component Atg3 as a substrate for Esa1. Specifically, acetylation of K19 and K48 of Atg3 regulated autophagy by controlling Atg3 and Atg8 interaction and lipidation of Atg8. Starvation induced transient K19-K48 acetylation through spatial and temporal regulation of the localization of acetylase Esa1 and the deacetylase Rpd3 on pre-autophagosomal structures (PASs) and their interaction with Atg3. Attenuation of K19-K48 acetylation was associated with attenuation of autophagy. Increased K19-K48 acetylation after deletion of the deacetylase Rpd3 caused increased autophagy. Thus, protein acetylation contributes to control of autophagy.


Subject(s)
Autophagy , Histone Acetyltransferases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Ubiquitin-Conjugating Enzymes/metabolism , Acetylation , Autophagy-Related Protein 8 Family , Autophagy-Related Proteins , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Histone Acetyltransferases/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Microtubule-Associated Proteins/metabolism , Mutation , Phagosomes/metabolism , Protein Processing, Post-Translational , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...