Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 177: 108637, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824789

ABSTRACT

Radiotherapy is a preferred treatment for brain metastases, which kills cancer cells via high doses of radiation meanwhile hardly avoiding damage to surrounding healthy cells. Therefore, the delineation of organs-at-risk (OARs) is vital in treatment planning to minimize radiation-induced toxicity. However, the following aspects make OAR delineation a challenging task: extremely imbalanced organ sizes, ambiguous boundaries, and complex anatomical structures. To alleviate these challenges, we imitate how specialized clinicians delineate OARs and present a novel cascaded multi-OAR segmentation framework, called OAR-SegNet. OAR-SegNet comprises two distinct levels of segmentation networks: an Anatomical-Prior-Guided network (APG-Net) and a Point-Cloud-Guided network (PCG-Net). Specifically, APG-Net handles segmentation for all organs, where multi-view segmentation modules and a deep prior loss are designed under the guidance of prior knowledge. After APG-Net, PCG-Net refines small organs through the mini-segmentation and the point-cloud alignment heads. The mini-segmentation head is further equipped with the deep prior feature. Extensive experiments were conducted to demonstrate the superior performance of the proposed method compared to other state-of-the-art medical segmentation methods.


Subject(s)
Brain Neoplasms , Radiotherapy Planning, Computer-Assisted , Humans , Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Brain Neoplasms/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk , Brain/diagnostic imaging , Brain/pathology , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...