Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 243: 125193, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37285886

ABSTRACT

Cellulose materials have poor wet strength and are susceptible to acidic or basic environments. Herein, we developed a facile strategy to modify bacterial cellulose (BC) with a genetically engineered Family 3 Carbohydrate-Binding Module (CBM3). To assess the effect of BC films, water adsorption rate (WAR), water holding capacity (WHC), water contact angle (WCA), and mechanical and barrier properties were determined. The results showed that CBM3-modified BC film exhibited significant strength and ductility improvement, reflecting improved mechanical properties of the film. The excellent wet strength (both in the acidic and basic environment), bursting strength, and folding endurance of CBM3-BC films were due to the strong interaction between CBM3 and fiber. The toughness of CBM3-BC films reached 7.9, 28.0, 13.3, and 13.6 MJ/m3, which were 6.1, 1.3, 1.4, and 3.0 folds over the control for conditions of dry, wet, acidic, and basic, respectively. In addition, its gas permeability was reduced by 74.3 %, and folding times increased by 56.8 % compared with the control. The synthesized CBM3-BC films may hold promise for future applications in food packaging, paper straw, battery separator, and other fields. Finally, the in situ modification strategy used to BC can be successfully applied in other functional modifications for BC materials.


Subject(s)
Cellulose , Water , Cellulose/chemistry , Water/chemistry , Tensile Strength
2.
Front Microbiol ; 13: 901690, 2022.
Article in English | MEDLINE | ID: mdl-35633711

ABSTRACT

Biotransformation has gained increasing attention due to its being an eco-friendly way for the production of value-added chemicals. The present study aimed to assess the potential of Bacillus pumilus ZB1 on guaiacyl lignin monomers biotransformation for the production of vanillin. Consequently, isoeugenol, eugenol, and vanillyl alcohol could be transformed into vanillin by B. pumilus ZB1. Based on the structural alteration of masson pine and the increase of total phenol content in the supernatant, B. pumilus ZB1 exhibited potential in lignin depolymerization and valorization using masson pine as the substrate. As the precursors of vanillin, 61.1% of isoeugenol and eugenol in pyrolyzed bio-oil derived from masson pine could be transformed into vanillin by B. pumilus ZB1. Four monooxygenases with high specific activity were identified that were involved in the transformation process. Thus, B. pumilus ZB1 could emerge as a candidate in the biosynthesis of vanillin by using wide guaiacyl precursors as the substrates.

3.
Bioresour Technol ; 346: 126644, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34973402

ABSTRACT

This short communication analyzed the effects of lignin-derived phenolic acid compounds on cellulase. Vanillic acid, syringic acid, ferulic acid, and isovanillic acid improved cellulase specific activity and saccharification efficiency. In the enzymatic hydrolysis process, the promotion effect of phenolic acid was concentration-dependent. The effect of low concentration of phenolic acids (less than 5 mM) was negligible. After pre-incubating 1 g cellulase with 5 mmol phenolic acid, FPase-specific activity, CMCase-specific activity, and pNPGase-specific activity increased by 57.06%, 136.79%, and 110.61%, respectively. After digestion with pre-incubated cellulase, the saccharification efficiency of phosphoric acid-swollen cellulose increased by 45.13%. Pre-incubation with phenolic acid improved the saccharification efficiency of cellulase. It might be helpful to enhance the comprehensive utilization capacity of lignin-derived compounds.


Subject(s)
Cellulase , Cellulose , Hydrolysis , Hydroxybenzoates/pharmacology , Lignin
4.
Bioresour Technol ; 345: 126414, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34838629

ABSTRACT

The effects of laccase pretreatment and surfactant addition in the simultaneous saccharification and fermentation (SSF) of corn stover by engineered Saccharomyces cerevisiae were studied. Surfactants Tween-80, tea saponin and rhamnolipid improved ethanol production in SSF, among which the biosurfactant rhamnolipid reached the highest ethanol yield. At the 6 d in SSF, the ethanol content of addition rhamnolipid of laccase pretreatment corn stover (Lac-CS) and Lac-CS reached 0.73 g/L and 0.56 g/L, which was 2.32 folds and 1.54 folds higher than the control of 0.22 g/L, respectively. These findings suggested that the combination of laccase pretreatment and rhamnolipid addition further improve ethanol production. GC-MS, composition of corn stover, protein concentration of supernatant and glucose content studies were executed to explore the mechanism of combination strategy of laccase pretreatment and rhamnolipid addition enhance ethanol production. This study provides guidance for the application of laccase and surfactant in bioethanol production.


Subject(s)
Ethanol , Zea mays , Fermentation , Glycolipids , Hydrolysis , Laccase
5.
Ecotoxicol Environ Saf ; 226: 112823, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34597843

ABSTRACT

To alleviate the risk of textile effluent, the development of highly effective bioremediation strategies for synthetic dye removal is needed. Herein, we aimed to assess whether intensified bioactivity of Bacillus pumilus ZB1 by oxidative stress could improve the removal of textile dyes. Methyl methanesulfonate (MMS) induced oxidative stress significantly promoted laccase expression of B. pumilus ZB1. Both the level of hydrogen dioxide and superoxide anion showed a significant positive correlation with laccase activity (RSQ = 0.963 and 0.916, respectively) along with the change of MMS concentration. The regulation of laccase expression was closely related to oxidative stress. The overexpressed laccase in the supernatant improved the decolorization of synthetic dyes (16.43% for Congo Red, 54.05% for Crystal Violet, and 41.61% for Reactive Blue 4). Laccase was subsequently expressed in E. coli. Investigation of the potential of bacterial laccase in dye remediation using Congo Red showed that an effective degradation of azo dye could be achieved with laccase treatment. Laccase remediation alleviated the cytotoxicity of Congo Red to human hepatocytes. In silico study identified eight amino acid residues of laccase involved in binding with Congo Red. Overall, regulation of oxidative stress towards bacterium can be used as a promising approach for the improvement of bacterial bioactivity in synthetic dye remediation.


Subject(s)
Coloring Agents , Laccase , Biodegradation, Environmental , Congo Red , Escherichia coli/metabolism , Humans , Laccase/genetics , Laccase/metabolism , Oxidative Stress
6.
Int J Biol Macromol ; 191: 222-229, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34508724

ABSTRACT

Exoglucanase (CBH) is the rate limiting enzyme in the process of cellulose degradation. The carbohydrate binding module (CBM) can improve the accessibility of cellulase to substrate, thereby promoting the enzymatic hydrolysis of cellulase. In this study, the influence of CBM on the properties of GH6 exoglucanase from Chaetomium thermophilum (CtCBH) is systematically explored from three perspectives: the fusion of exogenous CBM, the exogenous CBM replacement of its own CBM, and the deletion of its own CBM. The parental and reconstructed CtCBH presented the same optimum pH (6.0) and temperature (60 °C) for maximum activity. Fusion of exogenous CBM increased the binding capacity of CtCBH to Avicel by 8% and 9%, respectively, but it had no significant effect on its catalytic activity. The exogenous CBM replacement of its own CBM resulted in a 12% reduction in the binding ability of CtCBH to Avicel, and a 26% reduction in the catalytic activity of Avicel. The deletion of its own CBM significantly reduced the binding ability of CtCBH to Avicel by approximately 53%, but its catalytic activity was not obviously reduced. These observations suggest that binding ability of CBM is not necessary for the catalysis of CtCBH.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/chemistry , Chaetomium/enzymology , Fungal Proteins/chemistry , Binding Sites , Cellulose/chemistry , Cellulose/metabolism , Cellulose 1,4-beta-Cellobiosidase/genetics , Cellulose 1,4-beta-Cellobiosidase/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrolysis , Protein Binding
7.
Prep Biochem Biotechnol ; 51(2): 137-143, 2021.
Article in English | MEDLINE | ID: mdl-32755478

ABSTRACT

Pretreatment can improve the hydrolysis efficiency of cellulose, in which biological pretreatment plays an important role. In the present study, we uncovered that Rhodococcus has the ability of lignin degradation, which can decompose lignin and serve as a carbon source to meet the needs of its own growth. We used Rhodococcus to pretreat the corn stalks and evaluate the effect on cellulose hydrolysis. The concentration of reducing sugar produced by the hydrolysis of corn stalk after pretreatment of Rhodococcus is 2.95 g/L. SEM imaging showed that Rhodococcus pretreatment resulted the surface of corn stalk to be no longer complete, some lamellar structures fall off, and leave obvious traces, and obvious delamination was found at the edge of the fault. AFM imaging showed that the pretreatment changed the lignin structure of the corn stalk material surface, resulting in a higher surface roughness of 9.37. These results indicated that Rhodococcus pretreatment can improve the saccharification efficiency of cellulose by removing lignin and increasing the surface roughness of the material.


Subject(s)
Biotechnology/methods , Cellulose/chemistry , Rhodococcus/metabolism , Zea mays/metabolism , Biomass , Hydrolysis , Lignin/chemistry , Materials Testing , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Peroxidases/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...