Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 191(8): 445, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958767

ABSTRACT

A novel CCOF core-shell composite material (S)-DTP-COF@SiO2 was prepared via asymmetric catalytic and in situ growth strategy. The prepared (S)-DTP-COF@SiO2 was utilized as separation medium for HPLC enantioseparation using normal-phase and reversed-phase chromatographic modes, which displays excellent chiral separation performance for alcohols, esters, ketones, and epoxides, etc. Compared with chiral commercial chromatographic columns (Chiralpak AD-H and Chiralcel OD-H columns) and some previously reported chiral CCOF@SiO2 (CC-MP CCTF@SiO2 and MDI-ß-CD-modified COF@SiO2)-packed columns, there are 4, 3, 13, and 15 tested racemic compounds that could not be resolved on the Chiralpak AD-H column, Chiralcel OD-H column, CC-MP CCTF@SiO2 column, and MDI-ß-CD-modified COF@SiO2 column, respectively, which indicates that the resolution effect of (S)-DTP-COF@SiO2-packed column can be complementary to the other ones. The effects of the analyte mass, column temperature, and mobile phase composition on the enantiomeric separation were investigated. The chiral column exhibits good reproducibility after multiple consecutive injections. The RSDs (n = 5) of the peak area and retention time were less than 1.5% for repetitive separation of 2-methoxy-2-phenylethanol and 1-phenyl-1-pentanol. The chiral core-shell composite (S)-DTP-COF@SiO2 exhibited good enantiomeric separation performance, which not only demonstrates its potential as a novel CSP material in HPLC but also expands the range of applications for chiral COFs.

2.
Talanta ; 277: 126388, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38870759

ABSTRACT

Metal organic cages (MOCs), as an emerging discrete supramolecular compounds, have received widespread attention in separation, biomedicine, gas capture, catalysis, and molecular recognition due to their porosity, adjustability and stability. Herein, we present a new chiral MOC FeII4L4 coated capillary column prepared for gas chromatographic (GC) separation of different types of organic compounds, including n-alkanes, n-alcohols, alkylbenzenes, isomers, especially for racemic compounds. There are 20 different kinds of racemates (e.g., alcohols, ethers, epoxides, esters, alkenes, and aldehydes) were well resolved on the FeII4L4 chiral column and a maximum resolution value for 1-phenyl-1-propanol reaches 6.17. The FeII4L4 coated column exhibited high column efficiency (3100 plates m-1 for n-dodecane) and good enantiomeric resolution complementary to that of a commercial ß-DEX 120 column and the previously reported chiral MOC [Fe4L6] (ClO4)8 coated column. The relative standard deviation (RSDs) of the peak area and retention time of glycidol and nitrotoluene were below 1.2 %. This study reveals that chiral MOCs have good application prospects in chromatographic separation.

3.
Mikrochim Acta ; 191(5): 281, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649632

ABSTRACT

Two chiral covalent organic frameworks (CCOFs) core-shell microspheres based on achiral organic precursors by chiral-induced synthesis strategy for HPLC enantioseparation are reported for the first time. Using n-hexane/isopropanol as mobile phase, various kinds of racemates were selected as analytes and separated on the CCOF-TpPa-1@SiO2 and CCOF-TpBD@SiO2-packed columns with a low column backpressure (3 ~ 9 bar). The fabricated two CCOFs@SiO2 chiral columns exhibited good separation performance towards various racemates with high column efficiency (e.g., 19,500 plates m-1 for (4-fluorophenyl)ethanol and 18,900 plates m-1 for 1-(4-chlorophenyl)ethanol) and good reproducibility. Some effects have been investigated such as the analyte mass and column temperature on the HPLC enantioseparation. Moreover, the chiral separation results of the CCOF-TpPa-1@SiO2 chiral column and the commercialized Chiralpak AD-H column show a good complementarity. This study demonstrates that the usage of chiral-induced synthesis strategy for preparing CCOFs core-shell microspheres as a novel stationary phase has a good application potential in HPLC.

4.
Mikrochim Acta ; 190(6): 238, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37222823

ABSTRACT

The manufacturing of chiral covalent triazine framework core-shell microspheres CC-MP CCTF@SiO2 composite is reported as stationary phase for HPLC enantioseparation. The CC-MP CCTF@SiO2 core-shell microspheres were prepared by immobilizing chiral COF CC-MP CCTF constructed using cyanuric chloride and (S)-2-methylpiperazine on the surface of activated SiO2 through an in-situ growth approach. Various racemates as analytes were separated on the CC-MP CCTF@SiO2-packed column. The experimental results indicate that 19 pairs of enantiomers were well separated on the CC-MP CCTF@SiO2-packed column, including alcohols, phenols, amines, ketones, and organic acids. Among them, there are 17 pairs of enantiomers that can achieve baseline separation with good peak shapes. Their resolution values on this chiral column are between 0.4 and 5.61. The influences of analyte mass, column temperature, and composition of the mobile phase on the resolution of enantiomers were studied. In addition, the chiral resolution ability of CC-MP CCTF@SiO2-packed column was compared with the commercial chiral chromatographic columns (Chiralpak AD-H and Chiralcel OD-H columns) and some CCOF@SiO2 chiral columns (ß-CD-COF@SiO2, CTpBD@SiO2, and MDI-ß-CD-modified COF@SiO2). The CC-MP CCTF@SiO2-packed column exhibited some unique advantages and can complement these chiral columns in chiral separations. The research results show that the CC-MP CCTF@SiO2 chiral column offered high column efficiency (e.g., 17680 plates m-1 for ethyl mandelate), low column backpressure (5-9 bar), high enantioselectivity, and excellent chiral resolution ability for HPLC enantioseparation with good stability and reproducibility. The relative standard deviations (RSD) (n = 5) of the retention time, and peak areas by repeated separation of ethyl mandelate are 0.23% and 0.67%, respectively. It demonstrates that the CC-MP CCTF@SiO2 core-shell microsphere composite has great potential in enantiomeric separation by HPLC.

SELECTION OF CITATIONS
SEARCH DETAIL
...