Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38833393

ABSTRACT

Sensory information recognition is primarily processed through the ventral and dorsal visual pathways in the primate brain visual system, which exhibits layered feature representations bearing a strong resemblance to convolutional neural networks (CNNs), encompassing reconstruction and classification. However, existing studies often treat these pathways as distinct entities, focusing individually on pattern reconstruction or classification tasks, overlooking a key feature of biological neurons, the fundamental units for neural computation of visual sensory information. Addressing these limitations, we introduce a unified framework for sensory information recognition with augmented spikes. By integrating pattern reconstruction and classification within a single framework, our approach not only accurately reconstructs multimodal sensory information but also provides precise classification through definitive labeling. Experimental evaluations conducted on various datasets including video scenes, static images, dynamic auditory scenes, and functional magnetic resonance imaging (fMRI) brain activities demonstrate that our framework delivers state-of-the-art pattern reconstruction quality and classification accuracy. The proposed framework enhances the biological realism of multimodal pattern recognition models, offering insights into how the primate brain visual system effectively accomplishes the reconstruction and classification tasks through the integration of ventral and dorsal pathways.

2.
Neural Netw ; 145: 199-208, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34768090

ABSTRACT

Variational autoencoders (VAEs) are influential generative models with rich representation capabilities from the deep neural network architecture and Bayesian method. However, VAE models have a weakness that assign a higher likelihood to out-of-distribution (OOD) inputs than in-distribution (ID) inputs. To address this problem, a reliable uncertainty estimation is considered to be critical for in-depth understanding of OOD inputs. In this study, we propose an improved noise contrastive prior (INCP) to be able to integrate into the encoder of VAEs, called INCPVAE. INCP is scalable, trainable and compatible with VAEs, and it also adopts the merits from the INCP for uncertainty estimation. Experiments on various datasets demonstrate that compared to the standard VAEs, our model is superior in uncertainty estimation for the OOD data and is robust in anomaly detection tasks. The INCPVAE model obtains reliable uncertainty estimation for OOD inputs and solves the OOD problem in VAE models.


Subject(s)
Neural Networks, Computer , Bayes Theorem , Uncertainty
3.
IEEE Trans Neural Netw Learn Syst ; 33(5): 1935-1946, 2022 05.
Article in English | MEDLINE | ID: mdl-34665741

ABSTRACT

Neural coding, including encoding and decoding, is one of the key problems in neuroscience for understanding how the brain uses neural signals to relate sensory perception and motor behaviors with neural systems. However, most of the existed studies only aim at dealing with the continuous signal of neural systems, while lacking a unique feature of biological neurons, termed spike, which is the fundamental information unit for neural computation as well as a building block for brain-machine interface. Aiming at these limitations, we propose a transcoding framework to encode multi-modal sensory information into neural spikes and then reconstruct stimuli from spikes. Sensory information can be compressed into 10% in terms of neural spikes, yet re-extract 100% of information by reconstruction. Our framework can not only feasibly and accurately reconstruct dynamical visual and auditory scenes, but also rebuild the stimulus patterns from functional magnetic resonance imaging (fMRI) brain activities. More importantly, it has a superb ability of noise immunity for various types of artificial noises and background signals. The proposed framework provides efficient ways to perform multimodal feature representation and reconstruction in a high-throughput fashion, with potential usage for efficient neuromorphic computing in a noisy environment.


Subject(s)
Brain-Computer Interfaces , Neural Networks, Computer , Action Potentials/physiology , Brain/physiology , Models, Neurological , Neurons/physiology
4.
J Neurosci Methods ; 368: 109441, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34942271

ABSTRACT

Machine learning is playing an increasingly important role in medical image analysis, spawning new advances in the clinical application of neuroimaging. There have been some reviews on machine learning and epilepsy before, and they mainly focused on electrophysiological signals such as electroencephalography (EEG) and stereo electroencephalography (SEEG), while neglecting the potential of neuroimaging in epilepsy research. Neuroimaging has its important advantages in confirming the range of the epileptic region, which is essential in presurgical evaluation and assessment after surgery. However, it is difficult for EEG to locate the accurate epilepsy lesion region in the brain. In this review, we emphasize the interaction between neuroimaging and machine learning in the context of epilepsy diagnosis and prognosis. We start with an overview of epilepsy and typical neuroimaging modalities used in epilepsy clinics, MRI, DWI, fMRI, and PET. Then, we elaborate two approaches in applying machine learning methods to neuroimaging data: (i) the conventional machine learning approach combining manual feature engineering and classifiers, (ii) the deep learning approach, such as the convolutional neural networks and autoencoders. Subsequently, the application of machine learning on epilepsy neuroimaging, such as segmentation, localization, and lateralization tasks, as well as tasks directly related to diagnosis and prognosis are looked into in detail. Finally, we discuss the current achievements, challenges, and potential future directions in this field, hoping to pave the way for computer-aided diagnosis and prognosis of epilepsy.


Subject(s)
Epilepsy , Electroencephalography , Epilepsy/diagnostic imaging , Humans , Machine Learning , Neuroimaging/methods , Prognosis
5.
Med Biol Eng Comput ; 58(6): 1251-1264, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32221797

ABSTRACT

In medicine, white blood cells (WBCs) play an important role in the human immune system. The different types of WBC abnormalities are related to different diseases so that the total number and classification of WBCs are critical for clinical diagnosis and therapy. However, the traditional method of white blood cell classification is to segment the cells, extract features, and then classify them. Such method depends on the good segmentation, and the accuracy is not high. Moreover, the insufficient data or unbalanced samples can cause the low classification accuracy of model by using deep learning in medical diagnosis. To solve these problems, this paper proposes a new blood cell image classification framework which is based on a deep convolutional generative adversarial network (DC-GAN) and a residual neural network (ResNet). In particular, we introduce a new loss function which is improved the discriminative power of the deeply learned features. The experiments show that our model has a good performance on the classification of WBC images, and the accuracy reaches 91.7%. Graphical Abstract Overview of the proposed method, we use the deep convolution generative adversarial networks (DC-GAN) to generate new samples that are used as supplementary input to a ResNet, the transfer learning method is used to initialize the parameters of the network, the output of the DC-GAN and the parameters are applied the final classification network. In particular, we introduced a modified loss function for classification to increase inter-class variations and decrease intra-class differences.


Subject(s)
Image Processing, Computer-Assisted/methods , Leukocytes/cytology , Blood Cells/cytology , Deep Learning , Humans , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...