Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
mBio ; : e0119124, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829126

ABSTRACT

Human cytomegalovirus (HCMV), a widely prevalent human beta-herpesvirus, establishes lifelong persistence in the host following primary infection. In healthy individuals, the virus is effectively controlled by HCMV-specific T cells and typically exhibits asymptomatic. The T cell immune response plays a pivotal role in combating HCMV infection, while HCMV employs various strategies to counteract it within the host. Previously, we reported that UL23, a tegument protein of HCMV, facilitates viral immune evasion from interferon-gamma (IFN-γ) responses, and it is well known that IFN-γ is mainly derived from T cells. However, the involvement of UL23 in viral immune evasion from T cell-mediated immunity remains unclear. Herein, we present compelling evidence that UL23 significantly enhances viral resistance against T cell-mediated cytotoxicity during HCMV infection from the co-culture assays of HCMV-infected cells with T cells. We found that IFN-γ plays a major role in regulating T cell cytotoxicity mediated by UL23. More interestingly, we demonstrated that UL23 not only regulates the IFN-γ downstream responses but also modulates the IFN-γ secretion by regulating T cell activities. Further experiments indicate that UL23 upregulates the expression and signaling of programmed death ligand 1 (PD-L1), which is responsible for inhibiting multiple aspects of T cell activities, including activation, apoptosis, and IFN-γ secretion, as determined through RNA-seq analysis and inhibitor-blocking experiments, ultimately facilitating viral replication and spread. Our findings highlight the potential role of UL23 as an alternative antagonist in suppressing T cell cytotoxicity and unveil a novel strategy for HCMV to evade T cell immunity. IMPORTANCE: T cell immunity is pivotal in controlling primary human cytomegalovirus (HCMV) infection, restricting periodic reactivation, and preventing HCMV-associated diseases. Despite inducing a robust T cell immune response, HCMV has developed sophisticated immune evasion mechanisms that specifically target T cell responses. Although numerous studies have been conducted on HCMV-specific T cells, the primary focus has been on the impact of HCMV on T cell recognition via major histocompatibility complex molecules. Our studies show for the first time that HCMV exploits the programmed death ligand 1 (PD-L1) inhibitory signaling pathway to evade T cell immunity by modulating the activities of T cells and thereby blocking the secretion of IFN-γ, which is directly mediated by HCMV-encoded tegument protein UL23. While PD-L1 has been extensively studied in the context of tumors and viruses, its involvement in HCMV infection and viral immune evasion is rarely reported. We observed an upregulation of PD-L1 in normal cells during HCMV infection and provided strong evidence supporting its critical role in UL23-induced inhibition of T cell-mediated cytotoxicity. The novel strategy employed by HCMV to manipulate the inhibitory signaling pathway of T cell immune activation for viral evasion through its encoded protein offers valuable insights for the understanding of HCMV-mediated T cell immunomodulation and developing innovative antiviral treatment strategies.

2.
FASEB J ; 37(12): e23281, 2023 12.
Article in English | MEDLINE | ID: mdl-37933920

ABSTRACT

Signaling desensitization is key to limiting signal transduction duration and intensity. Signal transducer and activator of transcription 1 (STAT1) can mediate type II interferon (IFNγ)-induced immune responses, which are enhanced and inhibited by STAT1 phosphorylation and sumoylation, respectively. Here, we identified an N-MYC interacting protein, NMI, which can enhance STAT1 phosphorylation and STAT1-mediated IFNγ immune responses by binding and sequestering the E2 SUMO conjugation enzyme, UBC9, and blocking STAT1 sumoylation. NMI facilitates UBC9 nucleus-to-cytoplasm translocation in response to IFNγ, thereby inhibiting STAT1 sumoylation. STAT1 phosphorylation at Y701 and sumoylation at K703 are mutually exclusive modifications that regulate IFNγ-dependent transcriptional responses. NMI could not alter the phosphorylation level of sumoylation-deficient STAT1 after IFNγ treatment. Thus, IFNγ signaling is modulated by NMI through sequestration of UBC9 in the cytoplasm, leading to inhibition of STAT1 sumoylation. Hence, NMI functions as a switch for STAT1 activation/inactivation cycles by modulating an IFNγ-induced desensitization mechanism.


Subject(s)
Interferon-gamma , Sumoylation , Interferon-gamma/metabolism , Signal Transduction , Phosphorylation , STAT1 Transcription Factor/genetics
3.
Viruses ; 15(4)2023 04 20.
Article in English | MEDLINE | ID: mdl-37112994

ABSTRACT

Interferon-γ (IFN-γ) is a critical component of innate immune responses in humans to combat infection by many viruses, including human cytomegalovirus (HCMV). IFN-γ exerts its biological effects by inducing hundreds of IFN-stimulated genes (ISGs). In this study, RNA-seq analyses revealed that HCMV tegument protein UL23 could regulate the expression of many ISGs under IFN-γ treatment or HCMV infection. We further confirmed that among these IFN-γ stimulated genes, individual APOL1 (Apolipoprotein-L1), CMPK2 (Cytidine/uridine monophosphate kinase 2), and LGALS9 (Galectin-9) could inhibit HCMV replication. Moreover, these three proteins exhibited a synergistic effect on HCMV replication. UL23-deficient HCMV mutants induced higher expression of APOL1, CMPK2, and LGALS9, and exhibited lower viral titers in IFN-γ treated cells compared with parental viruses expressing full functional UL23. Thus, UL23 appears to resist the antiviral effect of IFN-γ by downregulating the expression of APOL1, CMPK2, and LGALS9. This study highlights the roles of HCMV UL23 in facilitating viral immune escape from IFN-γ responses by specifically downregulating these ISGs.


Subject(s)
Cytomegalovirus , Interferon-gamma , Humans , Antiviral Agents/pharmacology , Apolipoprotein L1 , Immunity, Innate , Interferon-gamma/pharmacology , Virus Replication , Viral Proteins/genetics , Viral Proteins/metabolism
4.
Opt Express ; 30(16): 28614-28631, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36299053

ABSTRACT

With the rapid development of light detection and ranging (LiDAR) technology, multispectral LiDAR (MSL) can realize three-dimensional (3D) imaging of the ground object by acquiring rich spectral information. Although color restoration has been achieved on the basis of the full-waveform data of MSL, further improvement of the visual effect of color point clouds still faces many challenges. In this paper, a highlight removal method for MSL color point clouds is proposed to explore the potential of 3D visualization. First, the MSL reflection model are introduced according to radar equation and Phong model, and the restored color of the MSL point clouds is determined to comprise diffuse and specular components. Second, a data conversion method is proposed to improve the massive point cloud processing efficiency by spatial dimension reduction and data compression. Then, the visual saliency map after color denoising is used to obtain the highlight region, the unknown information of which is recovered based on the global or local color information. Finally, three representative targets are selected and evaluated by qualitative and quantitative validation, which verifies that the method can effectively recover the high-quality highlight-free point clouds of MSL.

5.
J Hazard Mater ; 425: 127571, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34986559

ABSTRACT

Cadmium (Cd) is an environmental pollutant and endocrine disrupter, abundantly present in water, food, and soil. Accumulation of Cd in the body can negatively affect female reproduction; especially the uterus is exceptionally sensitive to the toxic actions of Cd. The anthocyanin cyanidin-3-O-glucoside (C3G) is a naturally occurring phenolic compound in fruits and plants that can antagonize the toxic effects of Cd. This capacity makes C3G a possible candidate to prevent Cd-induced female infertility. The present study aimed to investigate: 1) whether C3G intake could prevent Cd-induced female reproductive toxicity, and 2) the underlying mechanisms responsible for this protective effect. The results of our study indicated that Cd exposure did not affect ovarian function, but induced hypertrophy of the uterine endometrium. Oral intake of C3G markedly reduced the effects of Cd exposure on the thickness of the uterine epithelium cells. Transcriptomic analysis of the endometrium revealed that C3G intake had anti-estrogenic effects, attenuating Cd-induced endometrial epithelial cell proliferation by inhibiting estrogen-responsive genes, enhancing epithelial progesterone receptor expression, and regulating Klf4 expression. The current findings implicate that C3G has the potential to be used as a dietary supplement based on its capacity to intervene in Cd-induced female reproductive toxicity.


Subject(s)
Anthocyanins , Cadmium , Animals , Cadmium/toxicity , Cell Proliferation , Epithelium , Female , Glucosides , Mice , Uterus
6.
Virol J ; 18(1): 174, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34425845

ABSTRACT

BACKGROUND: Human rhinovirus (HRV) is one of the major viruses of acute respiratory tract disease among infants and young children. This work aimed to understand the epidemiological and phylogenetic features of HRV in Guangzhou, China. In addition, the clinical characteristics of hospitalized children infected with different subtype of HRV was investigated. METHODS: Hospitalized children aged < 14 years old with acute respiratory tract infections were enrolled from August 2018 to December 2019. HRV was screened for by a real-time reverse-transcription PCR targeting the viral 5'UTR. RESULTS: HRV was detected in 6.41% of the 655 specimens. HRV infection was frequently observed in children under 2 years old (57.13%). HRV-A and HRV-C were detected in 18 (45%) and 22 (55%) specimens. All 40 HRV strains detected were classified into 29 genotypes. The molecular evolutionary rate of HRV-C was estimated to be 3.34 × 10-3 substitutions/site/year and was faster than HRV-A (7.79 × 10-4 substitutions/site/year). Children who experienced rhinorrhoea were more common in the HRV-C infection patients than HRV-A. The viral load was higher in HRV-C detection group than HRV-A detection group (p = 0.0148). The median peak symptom score was higher in patients with HRV-C infection as compared to HRV-A (p = 0.0543), even though the difference did not significance. CONCLUSION: This study revealed the molecular epidemiological characteristics of HRV in patients with respiratory infections in southern China. Children infected with HRV-C caused more severe disease characteristics than HRV-A, which might be connected with higher viral load in patients infected with HRV-C. These findings will provide valuable information for the pathogenic mechanism and treatment of HRV infection.


Subject(s)
Picornaviridae Infections , Respiratory Tract Infections , Rhinovirus , Adolescent , Child , Child, Preschool , China/epidemiology , Enterovirus , Genetic Variation , Humans , Infant , Phylogeny , Picornaviridae Infections/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Rhinovirus/genetics
7.
Front Microbiol ; 12: 692515, 2021.
Article in English | MEDLINE | ID: mdl-34305856

ABSTRACT

Human cytomegalovirus (HCMV), the human beta-herpesvirus, can cause severe syndromes among both immunocompromised adult patients and newborns. Type I interferon (IFN-I) exerts an important effect to resist infections caused by viruses such as HCMV, while IFN evasion may serve as a key determining factor for viral dissemination and disease occurrence within hosts. In this study, UL23, a tegument protein of HCMV, was confirmed to be a key factor for negatively regulating the type I IFN immune response. A detailed analysis indicated that the viral UL23 protein increases the IFN-I antiviral resistance during HCMV infections. Furthermore, UL23 was shown to significantly reduce the levels of IFN-stimulated genes (ISGs) and promoter activity of IFN-I-stimulated response element. Mechanically, UL23 was discovered to impair the signal transducer and activator of transcription 1 (STAT1) phosphorylation, although it was not found to affect phosphorylation and expression of STAT2, Janus activated kinase 1, or tyrosine kinase 2, which are associated with IFN-I signal transduction pathway. Additionally, a significantly reduced nuclear expression of STAT1 but not of IFN regulatory factor 9 or STAT2 was observed. Findings of this study indicate that HCMV UL23 is a viral antagonist that acts against the cellular innate immunity and reveal a possible novel effect of UL23 on IFN-I signaling.

8.
Viral Immunol ; 33(5): 378-383, 2020 06.
Article in English | MEDLINE | ID: mdl-32181702

ABSTRACT

Human cytomegalovirus (HCMV) is a paradigm for pathogen-mediated immune evasion. The immune response to HCMV has been intensively studied for many years and still remains the focus of attention for numerous research groups. UL23 is an early gene of HCMV, belonging to the US22 gene family, encoding protein UL23. However, no monoclonal antibodies against to HCMV UL23 protein have been reported to prepare for the research. In this study, we prepared a highly specific monoclonal antibody against UL23 protein by alternately immunizing BALB/C mice with both UL23 recombinant protein and HCMV Towne. Recombinant protein UL23 was used as a detection antigen to screen 305 strains of hybridoma cells. One of them was identified to secrete IgG1 mAb named as 26C5. Western blotting results showed that not only the overexpressed UL23 protein in 293T cells but also the viral UL23 protein in HCMV-infected human foreskin fibroblast cells specifically were recognized by 26C5 mAb. Notably, we found that UL23 protein were enriched by 26C5 mAb in coimmunoprecipitation experiment with high potency and the native form of UL23 protein localizing primarily in the cytoplasm were recognized by 26C5 mAb in immunofluorescence assay with high specificity. The monoclonal antibody obtained in this study lays the foundation for further study of HCMV UL23 protein.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, Viral/immunology , Cytomegalovirus/immunology , Hybridomas/immunology , Immediate-Early Proteins/immunology , Animals , Antibodies, Monoclonal/biosynthesis , Antigens, Viral/genetics , Female , Fibroblasts/immunology , Fibroblasts/virology , Fluorescent Antibody Technique, Direct , Foreskin/cytology , HEK293 Cells , Humans , Immediate-Early Proteins/genetics , Immunoglobulin G/biosynthesis , Immunoglobulin G/immunology , Male , Mice , Mice, Inbred BALB C , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology
9.
Biomed Rep ; 11(3): 110-114, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31423305

ABSTRACT

The aim of the present study was to establish a mouse model of acute hyperglycemia, which may be utilized to detect the glucose concentration-dependent hypoglycemic activity of the glucagon-like peptide-1 derivative, 6-KTP. The results demonstrated that the first 30 min following the intraperitoneal injection of 2 g/kg glucose into C57BL/6J mice was the optimum time for assessing the hypoglycemic activity of potential therapeutic methods for diabetes. There was a linear association between the dose of 6-KTP and hypoglycemic activity between 0.2 and 1.2 mg/kg. The resulting model may serve as template for developing cost-effective in vivo models to test similar therapeutics.

10.
Protein Expr Purif ; 161: 78-83, 2019 09.
Article in English | MEDLINE | ID: mdl-31051245

ABSTRACT

Human cytomegalovirus (HCMV), a member of the human herpesvirus family, is a common opportunistic virus causing severe ailments and deaths in people with immature or compromised immune systems. UL23 is a virion protein found in the tegument and is expressed in the cytoplasm in HCMV infected cells. However, UL23 is dispensable for viral replication in cultured cells and little is currently known about its function. In order to further study of UL23, polyclonal antibody of UL23 was prepared. UL23 gene fragment was cloned from HCMV Towne by PCR and ligated into pET28a (+). The recombinant plasmid pET28a (+)-UL23 was transformed into E.coli BL21(DE3) to induce expression of the target protein. Then we efficiently purified the recombinant protein affinity chromatography under unique denaturation conditions. Recombinant UL23 protein was used as immunogen to inoculate New Zealand white rabbits and the sera was collected after the fourth immunization. UL23 Polyclonal antibody was purified from antisera using CNBr-activated Sepharose 4 beads. Our UL23 Polyclonal antibody showed specific reaction with UL23 in ELISA, Western-blot and immunofluorescence. More importantly, UL23 Polyclonal antibody could specifically recognize UL23 protein in HCMV infected cells, which laid a foundation for further study of HCMV UL23.


Subject(s)
Antibodies/analysis , Cytomegalovirus/metabolism , Viral Proteins/analysis , Animals , Antibodies/immunology , Antibodies/isolation & purification , Cytomegalovirus/genetics , Cytomegalovirus Infections/virology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Immunization , Rabbits , Recombinant Proteins/analysis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/isolation & purification , Viral Proteins/metabolism
11.
PLoS Pathog ; 14(1): e1006867, 2018 01.
Article in English | MEDLINE | ID: mdl-29377960

ABSTRACT

Interferon-γ (IFN-γ) represents one of the most important innate immunity responses in a host to combat infections of many human viruses including human herpesviruses. Human N-myc interactor (Nmi) protein, which has been shown to interact with signal transducer and activator of transcription (STAT) proteins including STAT1, is important for the activation of IFN-γ induced STAT1-dependent transcription of many genes responsible for IFN-γ immune responses. However, no proteins encoded by herpesviruses have been reported to interact with Nmi and inhibit Nmi-mediated activation of IFN-γ immune responses to achieve immune evasion from IFN-γ responses. In this study, we show strong evidence that the UL23 protein of human cytomegalovirus (HCMV), a human herpesvirus, specifically interacts with Nmi. This interaction was identified through a yeast two-hybrid screen and co-immunoprecipitation in human cells. We observed that Nmi, when bound to UL23, was not associated with STAT1, suggesting that UL23 binding of Nmi disrupts the interaction of Nmi with STAT1. In cells overexpressing UL23, we observed (a) significantly reduced levels of Nmi and STAT1 in the nuclei, the sites where these proteins act to induce transcription of IFN-γ stimulated genes, and (b) decreased levels of the induction of the transcription of IFN-γ stimulated genes. UL23-deficient HCMV mutants induced higher transcription of IFN-γ stimulated genes and exhibited lower titers than parental and control revertant viruses expressing functional UL23 in IFN-γ treated cells. Thus, UL23 appears to interact directly with Nmi and inhibit nuclear translocation of Nmi and its associated protein STAT1, leading to a decrease of IFN-γ induced responses and an increase of viral resistance to IFN-γ. Our results further highlight the roles of UL23-Nmi interactions in facilitating viral immune escape from IFN-γ responses and enhancing viral resistance to IFN antiviral effects.


Subject(s)
Cytomegalovirus/physiology , Immune Evasion , Immunity, Innate/drug effects , Interferon-gamma/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Viral Matrix Proteins/physiology , Cells, Cultured , Cytomegalovirus/immunology , Gene Expression Regulation/immunology , HEK293 Cells , Humans , Immune Evasion/drug effects , Immune Evasion/genetics , Immunity, Innate/genetics , Protein Binding , Signal Transduction/genetics , Signal Transduction/immunology
12.
Metallomics ; 7(4): 605-12, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25557363

ABSTRACT

Metabolically produced methylglyoxal is a cytotoxic compound that can lead to covalent modification of cellular DNA, RNA and protein. One pathway to detoxify this compound is via the glyoxalase enzyme system. The first enzyme of this detoxification system, glyoxalase I (GlxI), can be divided into two classes according to its metal activation profile, a Zn(2+)-activated class and a Ni(2+)-activated class. In order to elucidate some of the key structural features required for selective metal activation by these two classes of GlxI, deletional mutagenesis was utilized to remove, in a step-wise fashion, a key α-helix (residues 73-87) and two small loop regions (residues 99-103 and 111-114) from the Zn(2+)-activated Pseudomonas aeruginosa GlxI (GloA3) in order to mimic the smaller Ni(2+)-activated GlxI (GloA2) from the same organism. This approach was observed to clearly shift the metal activation profile of a Zn(2+)-activated class GlxI into a Ni(2+)-activated class GlxI enzyme. The α-helix structural component was found to contribute significantly toward GlxI metal specificity, while the two small loop regions were observed to play a more crucial role in the magnitude of the enzymatic activity. The current study should provide additional information on the fundamental relationship of protein structure to metal selectivity in these metalloenzymes.


Subject(s)
Lactoylglutathione Lyase/chemistry , Metals/chemistry , Mutagenesis , Nickel/chemistry , Amino Acid Sequence , Escherichia coli/metabolism , Humans , Molecular Sequence Data , Protein Conformation , Protein Structure, Secondary , Pseudomonas aeruginosa/metabolism , Pseudomonas putida/metabolism , Sequence Homology, Amino Acid , Zinc/chemistry
13.
J Inorg Biochem ; 108: 133-40, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22173092

ABSTRACT

The Escherichia coli glyoxalase system consists of the metalloenzymes glyoxalase I and glyoxalase II. Little is known regarding Ni(2+)-activated E. coli glyoxalase I substrate specificity, its thiol cofactor preference, the presence or absence of any substrate kinetic isotope effects on the enzyme mechanism, or whether glyoxalase I might catalyze additional reactions similar to those exhibited by related ßαßßß structural superfamily members. The current investigation has shown that this two-enzyme system is capable of utilizing the thiol cofactors glutathionylspermidine and trypanothione, in addition to the known tripeptide glutathione, to convert substrate methylglyoxal to non-toxic D-lactate in the presence of Ni(2+) ion. E. coli glyoxalase I, reconstituted with either Ni(2+) or Cd(2+), was observed to efficiently process deuterated and non-deuterated phenylglyoxal utilizing glutathione as cofactor. Interestingly, a substrate kinetic isotope effect for the Ni(2+)-substituted enzyme was not detected; however, the proton transfer step was observed to be partially rate limiting for the Cd(2+)-substituted enzyme. This is the first non-Zn(2+)-activated GlxI where a metal ion-dependent kinetic isotope effect using deuterium-labelled substrate has been observed. Attempts to detect a glutathione conjugation reaction with the antibiotic fosfomycin, similar to the reaction catalyzed by the related superfamily member FosA, were unsuccessful when utilizing the E. coli glyoxalase I E56A mutein.


Subject(s)
Escherichia coli/enzymology , Lactoylglutathione Lyase/metabolism , Nickel/metabolism , Cadmium/chemistry , Cadmium/metabolism , Evolution, Molecular , Kinetics , Lactoylglutathione Lyase/chemistry , Molecular Structure , Nickel/chemistry , Substrate Specificity
14.
Sheng Wu Gong Cheng Xue Bao ; 20(4): 601-6, 2004 Jul.
Article in Chinese | MEDLINE | ID: mdl-15968996

ABSTRACT

Sterigmatocystin (ST), the secondary metabolite of many kinds of filamentous fungi, is a potent carcinogen structurally related to the aflatoxins (AFT). With similar chemical structure, sterigmatocystion behaves much the homogeneous properties to aflatoxins, both of these mycotoxins exhibit similar biological properties due to their bisfuranoid structure. Since the common, and even heavier pollution, found in foods and feeds-stuff, sterigmatocystion is more harmful than aflatoxins. The reported detection methods of sterigmatocystion included the Thin-layer Chromatography, the High-Performance-Liquid Chromatography, the Enzyme-Linked Immunosorbant Assay and the PCR detection to the toxic gene, however studies about both easy and inexpensive electro-chemical methods have not been found. Our previous studies had discovered that Sterigmatocystin (ST) exist similar sensitivity towards aflatoxin-detoxifizyme (ADTZ), which we had isolated from a fungus, as aflatoxin does. In this work, the preliminary study on electrochemical analysis and determination of ST with triplet electrode enzyme-biosensor system (Ag/AgCl as the reference electrode, Pt and Au as the pair and work electrode, respectively) was carried out. Multiwall-carbon-nanotube (MWNT) had been used to increase the electron transportation on electrode. In the research, the Au electrode was modified by MWNT-immobilized ADTZ, and then the voltammertric behavior of ST was studied by means of cyclic voltammogram analysis and different pulse analysis. Autoprobe CP Research Atomic Force Microscope and TECNAI 10 Transmission Electron Microscope, had been used to detect the MWNT as well as the surface of MWNT-modified ADTZ. The voltammertric behavior of ST was studied by means of cyclic voltammogram analysis and different pulse analysis. The results show that the red-ox peak potential of ST is at the point of -600 mV, the linear detection range is from 8.32 x 10(-5) to 66.56 x 10(-5) mg/mL, the detection limit is at 8.32 x 10(-5) mg/mL, and the response time is 10 seconds. This study provided a good basic work for further research.


Subject(s)
Biosensing Techniques/methods , Nanotubes, Carbon/chemistry , Sterigmatocystin/analysis , Electrochemistry , Microscopy, Atomic Force , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...