Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(69): e202302774, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37682016

ABSTRACT

Iron oxides have emerged as a very promising and cost-effective alternative to precious metal catalysts for hydrogen production. However, the inert basal plane of iron oxides needs to be activated to enhance their catalytic efficiency. In this study, we employed heterostructure engineering and doped nickel to cooperatively activate the basal planes of iron oxide (Ni-Fe2 O3 /CeO2 HSs) to achieve high hydrogen evolution reaction (HER) activity. The Ni-Fe2 O3 /CeO2 HSs electrocatalyst demonstrates excellent basic HER activity and stability, such as an extremely low overpotential of 43 mV at 10 mA cm-2 current density and corresponding Tafel slope of 58.6 mV dec-1 . The increase in electrocatalyst activity and acceleration of hydrogen precipitation kinetics arises from the dual modulation of Ni doping and heterostructure, which not only modulates the electrocatalyst's electronic structure, but also increases the number and exposure of active sites. Remarkably, the generation of heterogeneous structure makes the catalyst se. The Ni-doped catalyst has not only increased HER activity but also low-temperature resistance. These results suggest that the synergistic activation of inert iron oxide basal planes through heterostructure formation and doping is a feasible strategy. Furthermore, for efficient electrocatalytic water splitting, this technique can be extended to other non-noble metal oxides.

2.
Appl Radiat Isot ; 199: 110892, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37285757

ABSTRACT

Various types of radionuclides have different atmospheric dispersion characteristics, such as buoyancy and gravitational deposition phenomenon of light gas and heavy particles, respectively. Gaussian plume model was widely used to describe atmospheric dispersion behaviors of radioactive effluents, particularly for the purpose of engineering environmental impact assessment or nuclear emergency support. Nonetheless, buoyancy and gravitational deposition were rarely reported in previous work for tritium in particular, which might cause a deviation in evaluating near-surface concentration distribution and radiation dose to the public. Based on the multi-form tritium case, we made a quantitative description for the buoyancy and gravitational deposition phenomenon and discussed the feasibility of developing an improved Gaussian plume model to predict near-surface concentration distribution. Firstly, tritium concentration distribution near to the surface was predicted by using computational fluid dynamics method (CFD) and standard Gaussian plume model to reach consistency without consideration of buoyancy and gravitational deposition effects. Secondly, effects of buoyancy and gravitational deposition were identified by species transport model for gaseous tritium and discrete phase model for droplet tritium with integrating the buoyancy force caused by density variation of gaseous tritium and gravitational force of droplet tritium with enough size. Thirdly, buoyancy and gravitational deposition correction factors were obtained to modify the standard Gaussian plume model. Lastly, predictive results by improved Gaussian plume model were compared with CFD method. It was proved the improved correction method enables higher accuracy in predicting the atmospheric concentration distribution of gaseous pollutants with density variation or particles with gravitational deposition properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...