Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Sci Rep ; 11(1): 5302, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674645

ABSTRACT

Magnetically actuated lab-on-a-chip (LOC) technologies have enabled rapid, highly efficient separation of specific biomarkers and cells from complex biological samples. Nonlinear magnetophoresis (NLM) is a technique that uses a microfabricated magnet array (MMA) and a time varying external magnetic field to precisely control the transport of superparamagnetic (SPM) beads on the surface of a chip based on their size and magnetization. We analyze the transport and separation behavior of SPM monomers and dimers on four MMA geometries, i.e., circular, triangular, square and rectangular shaped micromagnets, across a range of external magnetic field rotation frequencies. The measured critical frequency of the SPM beads on an MMA, i.e., the velocity for which the hydrodynamic drag on a bead exceeds the magnetic force, is closely related to the local magnetic flux density landscape on a micromagnet in the presence of an external magnetic field. A set of design criteria has been established for the optimization of MMAs for NLM separation, with particular focus on the shape of the micromagnets forming the array. The square MMA was used to detect a model protein biomarker and gene fragment based on a magnetic bead assembly (MBA) assay. This assay uses ligand functionalized SPM beads to capture and directly detect an analyte through the formation of SPM bead aggregates. These beads aggregates were detected through NLM separation and microscopic analysis resulting in a highly sensitive assay that did not use carrier fluid.

3.
Analyst ; 139(23): 6126-34, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25273875

ABSTRACT

A sensitive, rapid, and label free magnetic bead aggregation (MBA) assay has been developed that employs superparamagnetic (SPM) beads to capture, purify, and detect model proteins and the herpes simplex virus (HSV). The MBA assay is based on monitoring the aggregation state of a population of SPM beads using light scattering of individual aggregates. A biotin-streptavidin MBA assay had a femtomolar (fM) level sensitivity for analysis times less than 10 minutes, but the response of the assay becomes nonlinear at high analyte concentrations. A MBA assay for the detection of HSV-1 based on a novel peptide probe resulted in the selective detection of the virus at concentrations as low as 200 viral particles (vp) per mL in less than 30 min. We define the parameters that determine the sensitivity and response of the MBA assay, and the mechanism of enhanced sensitivity of the assay for HSV. The speed, relatively low cost, and ease of application of the MBA assay promise to make it useful for the identification of viral load in resource-limited and point-of-care settings where molecular diagnostics cannot be easily implemented.


Subject(s)
Antigens, Viral/chemistry , Herpesvirus 1, Human/isolation & purification , Viral Proteins/chemistry , Amino Acid Sequence , Antibodies, Viral , Biotin/chemistry , Flow Cytometry , Magnetics , Protein Binding , Sensitivity and Specificity , Streptavidin/chemistry
4.
Lab Chip ; 13(22): 4400-8, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24061548

ABSTRACT

Magnetic separation provides a rapid and efficient means of isolating biomaterials from complex mixtures based on their adsorption on superparamagnetic (SPM) beads. Flow enhanced non-linear magnetophoresis (FNLM) is a high-resolution mode of separation in which hydrodynamic and magnetic fields are controlled with micron resolution to isolate SPM beads with specific physical properties. In this article we demonstrate that a change in the critical frequency of FNLM can be used to identify beads with magnetic susceptibilities between 0.01 and 1.0 with a sensitivity of 0.01 Hz(-1). We derived an analytical expression for the critical frequency that explicitly incorporates the magnetic and non-magnetic composition of a complex to be separated. This expression was then applied to two cases involving the detection and separation of biological targets. This study defines the operating principles of FNLM and highlights the potential for using this technique for multiplexing diagnostic assays and isolating rare cell types.


Subject(s)
Cell Separation/instrumentation , Cell Separation/methods , Magnetics , Microfluidic Analytical Techniques , Cell Line, Tumor , Exosomes/physiology , Humans , Hydrodynamics , Magnetite Nanoparticles/chemistry , Microfluidic Analytical Techniques/instrumentation , Models, Theoretical , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/isolation & purification
5.
Inorg Chem ; 52(1): 306-12, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23249176

ABSTRACT

The synthesis and photophysical properties of the complex [Fe(phen)(2)(TTF-dppz)](2+) (TTF-dppz = 4',5'-bis-(propylthio)tetrathiafulvenyl[i]dipyrido[3,2-a:2',3'-c]phenazine, phen = 1,10-phenanthroline) are described. In this complex, excitation into the metal-ligand charge transfer bands results in the population of a high-spin state of iron(II), with a decay lifetime of approximately 1.5 ns, in dichloromethane, at room temperature. An intraligand charge transfer state can also be obtained and has a lifetime of 38 ps. A mechanism for the different states reached is proposed based on transient absorption spectroscopy.


Subject(s)
Electrochemical Techniques , Ferrous Compounds/chemistry , Ferrous Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Ligands , Molecular Structure , Spectrophotometry, Ultraviolet
6.
Chem Asian J ; 6(12): 3312-21, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-21948621

ABSTRACT

An efficient synthetic approach to a symmetrically functionalized tetrathiafulvalene (TTF) derivative with two diamine moieties, 2-[5,6-diamino-4,7-bis(4-pentylphenoxy)-1,3-benzodithiol-2-ylidene]-4,7-bis(4-pentylphenoxy)-1,3-benzodithiole-5,6-diamine (2), is reported. The subsequent Schiff-base reactions of 2 afford large π-conjugated multiple donor-acceptor (D-A) arrays, for example, the triad 2-[4,9-bis(4-pentylphenoxy)-1,3-dithiolo[4,5-g]quinoxalin-2-ylidene]-4,9-bis(4-pentylphenoxy)-1,3-dithiolo[4,5-g]quinoxaline (8) and the corresponding tetrabenz[bc,ef,hi,uv]ovalene-fused pentad 1, in good yields and high purity. The novel redox-active nanographene 1 is so far the largest known TTF-functionalized polycyclic aromatic hydrocarbon (PAH) with a well-resolved (1)H NMR spectrum. The electrochemically highly amphoteric pentad 1 and triad 8 exhibit various electronically excited charge-transfer states in different oxidation states, thus leading to intense optical intramolecular charge-transfer (ICT) absorbances over a wide spectral range. The chemical and electrochemical oxidations of 1 result in an unprecedented TTF(⋅+) radical cation dimerization, thereby leading to the formation of [1(⋅+)](2) at room temperature in solution due to the stabilizing effect, which arises from strong π-π interactions. Moreover, ICT fluorescence is observed with large solvent-dependent Stokes shifts and quantum efficiencies of 0.05 for 1 and 0.035 for 8 in dichloromethane.

7.
Dalton Trans ; 40(32): 8193-8, 2011 Aug 28.
Article in English | MEDLINE | ID: mdl-21725556

ABSTRACT

The explorative coordination chemistry of the bridging ligand TTF-PPB is presented. Its strong binding ability to Co(II) and then to Ni(II) or Cu(II) in the presence of hexafluoroacetylacetonate (hfac(-)), forming new mono- and dinuclear complexes 1-3, is described. X-ray crystallographic studies have been conducted in the case of the free ligand TTF-PPB as well as its complexes [Co(TTF-PPB)(hfac)(2)] (1) and [Co(hfac)(2)(µ-TTF-PPB)Ni(hfac)(2)] (2). Each metal ion is bonded to two bidentate hfac(-) anions through their oxygen atoms and two nitrogen atoms of the PPB moiety with a distorted octahedral coordination geometry. Specifically, nitrogen donor atoms of TTF-PPB adopt a cis-coordination but not in the equatorial plane, which is quite rare. Electronic absorption, photoinduced intraligand charge transfer ((1)ILCT), and electrochemical behaviour of 1-3 have been investigated. UV-Vis spectroscopy shows very strong bands in the UV region consistent with ligand centred π-π* transitions and an intense broad band in the visible region corresponding to a spin-allowed π-π* (1)ILCT transition. Upon coordination, the (1)ILCT band is bathochromically shifted by 3100, 6100 and 5900 cm(-1) on going from 1 to 3. The electrochemical studies reveal that all of them undergo two reversible oxidation and one reversible reduction processes, ascribed to the successive oxidations of the TTF moiety and the reduction of the PPB unit, respectively.

8.
Inorg Chem ; 50(8): 3295-303, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21413718

ABSTRACT

The synthesis and the photophysical properties of the complex [Ru(TTF-dppz)(2)(Aqphen)](2+) (TTF = tetrathiafulvalene, dppz = dipyrido-[3,2-a:2',3'-c]phenazine, Aqphen = anthraquinone fused to phenanthroline via a pyrazine bridge) are described. In this molecular triad excitation into the metal-ligand charge transfer bands results in the creation of a long-lived charge separated state with TTF acting as electron donor and anthraquinone as terminal acceptor. The lifetime of the charge-separated state is 400 ns in dichloromethane at room temperature. A mechanism for the charge separation involving an intermediate charge-separated state is proposed based on transient absorption spectroscopy.

10.
Nano Lett ; 10(3): 759-64, 2010 Mar 10.
Article in English | MEDLINE | ID: mdl-20121193

ABSTRACT

Redox-active dithiolated tetrathiafulvalene derivatives (TTFdT) were inserted in two-dimensional nanoparticle arrays to build interlinked networks of molecular junctions. Upon oxidation of the TTFdT to the dication state, we observed a conductance increase of the networks by up to 1 order of magnitude. Successive oxidation and reduction cycles demonstrated a clear switching behavior of the molecular junction conductance. These results show the potential of interlinked nanoparticle arrays as chemical sensors.


Subject(s)
Crystallization/methods , Heterocyclic Compounds/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Signal Processing, Computer-Assisted , Electric Conductivity , Materials Testing , Nanostructures/ultrastructure , Oxidation-Reduction , Particle Size
11.
Org Lett ; 8(5): 883-6, 2006 Mar 02.
Article in English | MEDLINE | ID: mdl-16494465

ABSTRACT

PtCl2 (5 mol%) is an effective catalyst for aromatization of enediynes via a C-H bond insertion of tethered alkanes. The reaction mechanism of this cyclization is proposed to involve platinum-pi-alkyne intermediates. This cyclization works not only for terminal alkynes but also for internal alkynes.

12.
J Am Chem Soc ; 127(10): 3406-12, 2005 Mar 16.
Article in English | MEDLINE | ID: mdl-15755159

ABSTRACT

TpRu(PPh3)(CH3CN)2 PF6 (10 mol %) catalyst effected the nucleophilic addition of water, alcohols, aniline, acetylacetone, pyrroles, and dimethyl malonate to unfunctionalized enediynes under suitable conditions (100 degrees C, 12-24 h) and gave functionalized benzene products in good yields. In this novel cyclization, nucleophiles very regioselectively attack the internal C1' alkyne carbon of enediynes to give benzene derivatives as a single regioisomer. Experiments with methoxy substituents exclude the possible involvement of naphthyl cations as reaction intermediates in the cyclization of (o-ethynylphenyl) alkynes. Deuterium-labeling experiments indicate that the catalytically active species is ruthenium-pi-alkyne rather than ruthenium-vinylidene species. This hypothesis is further confirmed by the aromatization of o-(2'-iodoethynyl)phenyl alkynes with alcohols. We propose a nucleophilic addition/insertion mechanism for this nucleophilic aromatization on the basis of a series of experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...