Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8709, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622262

ABSTRACT

Sect. tuberculata plant belongs to the Camellia genus and is named for the "tuberculiform protuberance on the surface of the ovary and fruit". It is a species of great ornamental value and potential medicinal value. However, little has been reported on the metabolites of C. tuberculata seeds. Therefore, this study was conducted to investigate the metabolites of C. tuberculata seeds based on UPLC/ESI-Q TRAP-MS/MS with extensively targeted metabolomics. A total of 1611 metabolites were identified, including 107 alkaloids, 276 amino acids and derivatives, 283 flavonoids, 86 lignans and coumarins, 181 lipids, 68 nucleotides and derivatives, 101 organic acids, 190 phenolic acids, 10 quinones, 4 steroids, 17 tannins, 111 terpenoids, and 177 other metabolites. We compared the different metabolites in seeds between HKH, ZM, ZY, and LY. The 1311 identified different metabolites were classified into three categories. Sixty-three overlapping significant different metabolites were found, of which lignans and coumarins accounted for the largest proportion. The differentially accumulated metabolites were enriched in different metabolic pathways between HKH vs. LY, HKH vs. ZM, HKH vs. ZY, LY vs. ZY, ZM vs. LY and ZM vs. ZY, with the most abundant metabolic pathways being 4, 2, 4, 7, 7 and 5, respectively (p < 0.05). Moreover, among the top 20 metabolites in each subgroup comparison in terms of difference multiplicity 7, 8 and 13. ZM and ZY had the highest phenolic acid content. Ninety-six disease-resistant metabolites and 48 major traditional Chinese medicine agents were identified based on seven diseases. The results of this study will not only lead to a more comprehensive and in-depth understanding of the metabolic properties of C. tuberculata seeds, but also provide a scientific basis for the excavation and further development of its medicinal value.


Subject(s)
Camellia , Hydroxybenzoates , Lignans , Camellia/chemistry , Antioxidants/chemistry , Tandem Mass Spectrometry , Flavonoids/analysis , Seeds/chemistry , Metabolomics/methods , Plant Extracts/chemistry , Lignans/analysis , Coumarins/analysis
2.
BMC Genomics ; 25(1): 108, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267876

ABSTRACT

BACKGROUND: Sect. Tuberculata belongs to Camellia, and its members are characterized by a wrinkled pericarp and united filaments. All the plants in this group, which are endemic to China, are highly valuable for exploring the evolution of Camellia and have great potential for use as an oil source. However, due to the complex and diverse phenotypes of these species and the difficulty of investigating them in the field, their complex evolutionary history and interspecific definitions have remained largely unelucidated. RESULTS: Therefore, we newly sequenced and annotated 12 chloroplast (cp) genomes and retrieved the published cp genome of Camellia anlungensis Chang in sect. Tuberculata. In this study, comparative analysis of the cp genomes of the thirteen sect. Tuberculata species revealed a typical quadripartite structure characterized by a total sequence length ranging from 156,587 bp to 157,068 bp. The cp.genome arrangement is highly conserved and moderately differentiated. A total of 130 to 136 genes specific to the three types were identified by annotation, including protein-coding genes (coding sequences (CDSs)) (87-91), tRNA genes (35-37), and rRNA genes (8). The total observed frequency ranged from 23,045 (C. lipingensis) to 26,557 (C. anlungensis). IR region boundaries were analyzed to show that the ycf1 gene of C. anlungensis is located in the IRb region, while the remaining species are present only in the IRa region. Sequence variation in the SSC region is greater than that in the IR region, and most protein-coding genes have high codon preferences. Comparative analyses revealed six hotspot regions (tRNA-Thr(GGT)-psbD, psbE-petL, ycf15-tRNA-Leu(CAA), ndhF-rpl32, ndhD, and trnL(CAA)-ycf15) in the cp genomes that could serve as potential molecular markers. In addition, the results of phylogenetic tree construction based on the cp genomes showed that the thirteen sect. Tuberculata species formed a monophyletic group and were divided into two evolutionarily independent clades, confirming the independence of the section. CONCLUSIONS: In summary, we obtained the cp genomes of thirteen sect. Tuberculata plants and performed the first comparative analysis of this group. These results will help us better characterize the plants in this section, deepen our understanding of their genetic characteristics and phylogenetic relationships, and lay the theoretical foundation for their accurate classification, elucidation of their evolutionary changes, and rational development and utilization of this section in the future.


Subject(s)
Camellia , Genome, Chloroplast , Phylogeny , Camellia/genetics , Genome, Chloroplast/genetics , Genomics , RNA, Transfer
3.
Appl Radiat Isot ; 202: 111059, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37812858

ABSTRACT

With an increase of stopping operation of nuclear reactors worldwide, the supply of medical 99Mo becomes difficult and thus many efforts have been made to find an alternative. A process based on an electron linear accelerator (linac) system and a100Mo target via the 100Mo (γ,n)99Mo reaction receives a lot of attention due to the relatively low level of co-produced impurities. This process has been recently developed at the Institute of Modern Physics (IMP) and the Monte Carlo simulation was used to optimize the target system before operating pilot irradiation experiments. First, tungsten and tantalum, as mostly used converter materials, were tested. The yield of 99Mo was evaluated with respect to the converter thickness and the electron beam energy by means of Geant4 simulations. Besides, the specific activity of 99Mo produced from one-stage approach (100Mo target without a converter) and two-stage approach (100Mo target with a converter) was compared when varying the testing conditions. The two-stage approach was selected for the experiment due to the higher specific activity of produced 99Mo at all tested conditions. A target consisting of a 10 mm thickness of the 100Mo tablets and a 2.4 mm thick Ta converter was irradiated for 40 h (50 MeV with 0.2 µA). The Geant4-calculated specific activity of generated 99Mo at the end of bombardment agreed well with the experimental value, which proved high level of accuracy of the Geant4 simulation. In future studies, the Geant4 simulation will be used to optimize the production process when using high power linac system.

4.
Phys Rev E ; 108(6-2): 065203, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38243529

ABSTRACT

We report on the experimental observation of the focusing effect of a 50MeV accelerator electron beam in a gas-discharge plasma target. The plasma is generated by igniting an electric discharge in two collinear quartz tubes, with the currents up to 1.5kA flowing in opposite directions in either of the two tubes. In such plasma current configuration, the electron beam is defocused in the first discharge tube and focused with a stronger force in the second one. With symmetric plasma currents, asymmetric effects are, however, induced on the beam transport process and the beam radius is reduced by a factor of 2.6 compared to the case of plasma discharge off. Experimental results are supported by two-dimensional particle-in-cell simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...