Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916245

ABSTRACT

Droplet evaporation and dissolution phenomena are pervasive in both natural and artificial systems, playing crucial roles in various applications. Understanding the intricate processes involved in the evaporation and dissolution of sessile droplets is of paramount importance for applications such as inkjet printing, surface coating, and nanoparticle deposition, etc. In this study, we present a demonstration of electrochemical investigation of the dissolution behaviour in sub-nL droplets down to sub-pL volume. Droplets on an electrode have been studied for decades in the field of electrochemistry to understand the phase transfer of ions at the oil-water interface, accelerated reaction rates in microdroplets, etc. However, the impact of microdroplet dissolution on the redox activity of confined molecules within the droplet has not been explored previously. As a proof-of-principle, we examine the dissolution kinetics of 1,2-dichloroethane droplets (DCE) spiked with 155 µM decamethylferrocene within an aqueous phase on an ultramicroelectrode (r = 6.3 µm). The aqueous phase serves as an infinite sink, enabling the dissolution of DCE droplets while also facilitating convenient electrical contact with the reference/counter electrode (Ag/AgCl 1 M KCl). Through comprehensive voltammetric analysis, we unravel the impact of droplet dissolution on electrochemical response as the droplet reaches minuscule volumes. We validate our experimental findings by finite element modelling, which shows deviations from the experimental results as the droplet accesses negligible volumes, suggesting the presence of complex dissolution modes.

2.
Analyst ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869006

ABSTRACT

The ability of analytical strategies to detect and positively identify molecules under extremely dilute conditions is important for the growth and expansion of analytical techniques and instrumentation. At present, few measurement science techniques can robustly approach the measurement of just a few thousand molecules. Here, we present an electrochemical platform for the detection and positive identification of fewer than 1000 molecules of decamethylferrocene ((Cp*)2FeII). We achieve this remarkable detection threshold by trapping (Cp*)2FeII in a 1,2-dichloroethane microdroplet, which is allowed to dissolve into an aqueous continuous phase while on a gold microelectrode (radius ∼6.25 µm). Because electrochemistry is not sensitive enough to observe the charge of less than 1000 molecules, we dissolved µM amounts hexacyanoferrate(III) in the aqueous continuous phase. The biphasic reaction between hexacyanoferrate(III) and Cp2*(Fe)II allows for a feedback loop when the microelectrode is biased sufficiently negative to reduce Cp2*(Fe)III. This feedback loop, a typical EC' catalytic mechanism, amplifies the electrochemical signal of Cp2*(Fe)II when the droplet is of small enough dimensions for feedback to occur. Our results demonstrate that clever biphasic reactions can be coupled with dissolving microdroplets to access extremely low limits of quantitation in electroanalysis.

3.
Anal Chem ; 96(14): 5384-5391, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38538561

ABSTRACT

Droplet evaporation has previously been used as a concentration enrichment strategy; however, the measurement technique of choice requires quantification in rather large volumes. Electrochemistry has recently emerged as a method to robustly probe volumes even down to the attoliter (10-18 L) level. We present a concentration enrichment strategy based on the dissolution of a microdroplet placed on the surface of a Au ultramicroelectrode (radius ∼ 6.25 µm). By precisely positioning a 1,2-dichloroethane microdroplet onto the ultramicroelectrode with a microinjector, we are able to track the droplet's behavior optically and electrochemically. Because the droplet spontaneously dissolves over time, given the relative solubility of 1,2-dichloroethane in the water continuous phase, the change in volume with time enriches the concentration of the redox probe (Cp2*(Fe)II) in the droplet. We demonstrate robust electrochemical detection down to sub-nM (800 pM) concentrations of Cp2*(Fe)II. For this droplet, 800 pM constitutes only about 106 molecules. We extend the strategy in a single-blind study to determine unknown concentrations, emphasizing the promise of the new methodology. These results take voltammetric quantification easily to the sub-µM regime.

4.
Angew Chem Int Ed Engl ; 63(11): e202319010, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38168077

ABSTRACT

Despite the advantages of aqueous zinc (Zn) metal batteries (AZMB) like high specific capacity (820 mAh g-1 and 5,854 mAh cm-3 ), low redox potential (-0.76 V vs. the standard hydrogen electrode), low cost, water compatibility, and safety, the development of practically relevant batteries is plagued by several issues like unwanted hydrogen evolution reaction (HER), corrosion of Zn substrate (insulating ZnO, Zn(OH)2 , Zn(SO4 )x (OH)y , Zn(ClO4 )x (OH)y etc. passivation layer), and dendrite growth. Controlling and suppressing HER activity strongly correlates with the long-term cyclability of AZMBs. Therefore, a precise quantitative technique is needed to monitor the real-time dynamics of hydrogen evolution during Zn electrodeposition. In this study, we quantify hydrogen evolution using in situ electrochemical mass spectrometry (ECMS). This methodology enables us to determine a correction factor for the faradaic efficiency of this system with unmatched precision. For instance, during the electrodeposition of zinc on a copper substrate at a current density of 1.5 mA/cm2 for 600 seconds, 0.3 % of the total charge is attributed to HER, while the rest contributes to zinc electrodeposition. At first glance, this may seem like a small fraction, but it can be detrimental to the long-term cycling performance of AZMBs. Furthermore, our results provide insights into the correlation between HER and the porous morphology of the electrodeposited zinc, unravelling the presence of trapped H2 and Zn corrosion during the charging process. Overall, this study sets a platform to accurately determine the faradaic efficiency of Zn electrodeposition and provides a powerful tool for evaluating electrolyte additives, salts, and electrode modifications aimed at enhancing long-term stability and suppressing the HER in aqueous Zn batteries.

5.
Anal Chem ; 95(51): 18748-18753, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38082457

ABSTRACT

Diffusion is a fundamental process in various domains, such as pollution control, drug delivery, and isotope separation. Accurately measuring the diffusion coefficients (D) of one liquid into another often encounters challenges stemming from intermolecular interactions, precise observations at the liquid interface, convection, etc. Here, we present an innovative electrochemical methodology for determining the diffusion coefficient of a liquid into another liquid. The method involves precisely tracking the lifetime of a nonaqueous droplet. An organic droplet is placed on an ultramicroelectrode surrounded by an aqueous solution of potassium hexacyanoferrate(II/III). The droplet initially blocks the reduction or oxidation of the redox species. As the droplet dissolves, giving access to the conductive microelectrode surface, a continuously increasing current is observed in voltammetry and the amperometric i-t response. The electrochemical response thus directly reports on the flux of redox species on the electrode surface, allowing us to precisely determine the lifetime of the droplet. D values are directly determined through a combination of electrochemical analysis and the principles of droplet dissolution. We demonstrate the quantification of 1,2-dichloroethane and nitrobenzene into water, yielding diffusion coefficients of (11.3 ± 1.2) × 10-6 cm2/s and (5.2 ± 1.1) × 10-6 cm2/s, respectively. This work establishes a reliable electrochemical approach for quantifying diffusion coefficients based on droplet lifetime analysis.

6.
ACS Appl Mater Interfaces ; 15(19): 23093-23103, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37158454

ABSTRACT

Electrochemical energy storage systems are critical in several ways for a smooth transition from nonrenewable to renewable energy sources. Zn-based batteries are one of the promising alternatives to the existing state-of-the-art Li-ion battery technology, since Li-ion batteries pose significant drawbacks in terms of safety and cost-effectiveness. Zn (with a reduction potential of -0.76 V vs SHE) has a significantly higher theoretical volumetric capacity (5851 mAh/cm3) than Li (2061 mAh/cm3), and it is certainly far less expensive, safer, and more earth-abundant. The formation of dendrites, hydrogen evolution, and the formation of a ZnO passivation layer on the Zn anode are the primary challenges in the development and deployment of rechargeable zinc batteries. In this work, we examine the role of imidazole as an electrolyte additive in 2 M ZnCl2 to prevent dendrite formation during zinc electrodeposition via experimental (kinetics and imaging) and theoretical density functional theory (DFT) studies. To characterize the efficacy and to identify the appropriate concentration of imidazole, linear sweep voltammetry (LSV) and chronoamperometry (CA) are performed with in situ monitoring of the electrodeposited zinc. The addition of 0.025 wt % imidazole to 2 M ZnCl2 increases the cycle life of Zn-symmetric cells cycled at 1 mA/cm2 for 60 min of plating and stripping dramatically from 90 to 240 h. A higher value of the nucleation overpotential is noted in the presence of imidazole, which suggests that imidazole is adsorbed at a competitively faster rate on the surface of zinc, thereby suppressing the zinc electrodeposition kinetics and the formation. X-ray tomography reveals that a short circuit caused by dendrite formation is the main plausible failure mechanism of Zn symmetric cells. It is observed that the electrodeposition of zinc is more homogeneous in the presence of imidazole, and its presence in the electrolyte also inhibits the production of a passivating coating (ZnO) on the Zn surface, thereby preventing corrosion. DFT calculations conform well with the stated experimental observations.

SELECTION OF CITATIONS
SEARCH DETAIL
...