Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 826: 154056, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35231525

ABSTRACT

Fossil-fuel-based plastics have many enticing properties, but their production has resulted in significant environmental issues that require immediate attention. Despite the fact that these polymers are manmade, some bacteria can degrade and metabolise them, suggesting that biotechnologies based on the principle of plastic biodegradation could be beneficial. Among different types of plastics, polypropylene (PP), either having low or high density, is one of the most consumed plastics (18.85%). Their debasement under natural conditions is somewhat tricky. Still, their debasement under natural conditions is rather difficult slightly. However, different scientists have still made efforts by employing other microbes such as bacteria, fungi, and guts bacteria of larvae of insects to bio-deteriorate the PP plastic. Pre-irradiation techniques (ultraviolet and gamma irradiations), compatibilizers, and bio-additives (natural fibers, starch, and polylactic acid) have been found to impact percent bio-deterioration of different PP derivatives stronglythe various. The fungal and bacterial study showed that PP macro/microplastic might serve as an energy source and sole carbon during bio-degradation. Generally, gravimetric method or physical characterization techniques such as FTIR, XRD, SEM, etc., are utilized to affirm the bio-degradation of PP plastics-based materials. However, these techniques are not enough to warrant the bio-deterioration of PP. In this regard, a new technique approach that measures the amount of carbon dioxide emitted during bacterial or fungus degradation has also been discussed. In addition, further exploration is needed on novel isolates from plastisphere environments, sub-atomic strategies to describe plastic-debasing microorganisms and improve enzymatic action strategies, and omics-based innovations to speed up plastic waste bio-deterioration.


Subject(s)
Plastics , Polypropylenes , Bacteria , Biodegradation, Environmental , Microplastics , Polymers
2.
Int J Biol Macromol ; 182: 1554-1581, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34029581

ABSTRACT

Cellulose nanocrystals (CNCs) have attracted great interest from researchers from academic and industrial areas because of their interesting structural features and unique physicochemical properties, such as magnificent mechanical strength, high surface area, and many hydroxyl groups for chemical modification, low density, and biodegradability. CNCs are an outstanding contender for applications in assorted fields comprehensive of, e.g., biomedical, electronic gadgets, water purifications, nanocomposites, membranes. Additionally, a persistent progression is going on in the extraction and surface modification of cellulose nanocrystals to fulfill the expanding need of producers to fabricate cellulose nanocrystals-based materials. In this review, the foundation of nanocellulose that emerged from lignocellulosic biomass and recent development in extraction/preparation of cellulose nanocrystals and different types of cellulose nanocrystal surface modification techniques are summed up. The different sorts of cellulose modification reactions that have been discussed are acetylation, oxidations, esterifications, etherifications, ion-pair formation, hydrogen bonding, silanization, nucleophilic substitution reactions, and so forth. The mechanisms of surface functionalization reactions are also introduced and considered concerning the impact on the reactions. Moreover, the primary association of cellulose and different forms of nanocellulose has likewise been examined for beginners in this field.


Subject(s)
Cellulose/chemistry , Chitosan/chemistry , Nanoparticles/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Humans , Nanocomposites/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...