Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189157, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032538

ABSTRACT

Mixed-lineage kinase 3 (MLK3) is a serine/threonine kinase of the MAPK Kinase kinase (MAP3K) family that plays critical roles in various biological processes, including cancer. Upon activation, MLK3 differentially activates downstream MAPKs, such as JNK, p38, and ERK. In addition, it regulates various non-canonical signaling pathways, such as ß-catenin, AMPK, Pin1, and PAK1, to regulate cell proliferation, apoptosis, invasion, and metastasis. Recent studies have also uncovered other potentially diverse roles of MLK3 in malignancy, which include metabolic reprogramming, cancer-associated inflammation, and evasion of cancer-related immune surveillance. The role of MLK3 in cancer is complex and cancer-specific, and an understanding of its function at the molecular level aligned specifically with the cancer hallmarks will have profound therapeutic implications for diagnosing and treating MLK3-dependent cancers. This review summarizes the current knowledge about the effect of MLK3 on the hallmarks of cancer, providing insights into its potential as a promising anticancer drug target.

2.
Oncogene ; 43(30): 2307-2324, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38858590

ABSTRACT

Advanced hepatocellular carcinoma (HCC) is a lethal disease, with limited therapeutic options. Mixed Lineage Kinase 3 (MLK3) is a key regulator of liver diseases, although its role in HCC remains unclear. Analysis of TCGA databases suggested elevated MAP3K11 (MLK3 gene) expression, and TMA studies showed higher MLK3 activation in human HCCs. To understand MLK3's role in HCC, we utlized carcinogen-induced HCC model and compared between wild-type and MLK3 knockout (MLK3-/-) mice. Our studies showed that MLK3 kinase activity is upregulated in HCC, and MLK3 deficiency alleviates HCC progression. MLK3 deficiency reduced proliferation in vivo and MLK3 inhibition reduced proliferation and colony formation in vitro. To obtain further insight into the mechanism and identify newer targets mediating MLK3-induced HCCs, RNA-sequencing analysis was performed. These showed that MLK3 deficiency modulates various gene signatures, including EMT, and reduces TGFB1&2 expressions. HCC cells overexpressing MLK3 promoted EMT via autocrine TGFß signaling. Moreover, MLK3 deficiency attenuated activated hepatic stellate cell (HSC) signature, which is increased in wild-type. Interestingly, MLK3 promotes HSC activation via paracrine TGFß signaling. These findings reveal TGFß playing a key role at different steps of HCC, downstream of MLK3, implying MLK3-TGFß axis to be an ideal drug target for advanced HCC management.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MAP Kinase Kinase Kinases , Mitogen-Activated Protein Kinase Kinase Kinase 11 , Signal Transduction , Transforming Growth Factor beta , Animals , Humans , Male , Mice , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Mice, Knockout , Transforming Growth Factor beta/metabolism
3.
Adv Cancer Res ; 159: 113-143, 2023.
Article in English | MEDLINE | ID: mdl-37268394

ABSTRACT

Pancreatic Ductal Adenocarcinoma (PDAC), commonly called pancreatic cancer, is aggressive cancer usually detected at a late stage, limiting treatment options with modest clinical responses. It is projected that by 2030, PDAC will be the second most common cause of cancer-related mortality in the United States. Drug resistance in PDAC is common and significantly affects patients' overall survival (OS). Oncogenic KRAS mutations are nearly uniform in PDAC, affecting over 90% of patients. However, effective drugs directed to target prevalent KRAS mutants in pancreatic cancer are not in clinical practice. Accordingly, efforts are continued on identifying alternative druggable target(s) or approaches to improve patient outcomes with PDAC. In most PDAC cases, the KRAS mutations turn-on the RAF-MEK-MAPK pathways, leading to pancreatic tumorigenesis. The MAPK signaling cascade (MAP4K→MAP3K→MAP2K→MAPK) plays a central role in the pancreatic cancer tumor microenvironment (TME) and chemotherapy resistance. The immunosuppressive pancreatic cancer TME is another unfavorable factor affecting the therapeutic efficacy of chemotherapy and immunotherapy. The immune checkpoint proteins (ICPs), including CTLA-4, PD-1, PD-L1, and PD-L2, are critical players in T cell dysfunction and pancreatic tumor cell growth. Here, we review the activation of MAPKs, a molecular trait of KRAS mutations and their impact on pancreatic cancer TME, chemoresistance, and expression of ICPs that could influence the clinical outcomes in PDAC patients. Therefore, understanding the interplay between MAPK pathways and TME could help to design rational therapy combining immunotherapy and MAPK inhibitors for pancreatic cancer treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Immunotherapy , Mitogen-Activated Protein Kinases/metabolism , Tumor Microenvironment , Pancreatic Neoplasms
4.
Cancers (Basel) ; 15(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37190200

ABSTRACT

Mitogen-activated protein kinase (MAPK) cascades are crucial in extracellular signal transduction to cellular responses. The classical three-tiered MAPK cascades include signaling through MAP kinase kinase kinase (MAP3K) that activates a MAP kinase kinase (MAP2K), which in turn induces MAPK activation and downstream cellular responses. The upstream activators of MAP3K are often small guanosine-5'-triphosphate (GTP)-binding proteins, but in some pathways, MAP3K can be activated by another kinase, which is known as a MAP kinase kinase kinase kinase (MAP4K). MAP4K4 is one of the widely studied MAP4K members, known to play a significant role in inflammatory, cardiovascular, and malignant diseases. The MAP4K4 signal transduction plays an essential role in cell proliferation, transformation, invasiveness, adhesiveness, inflammation, stress responses, and cell migration. Overexpression of MAP4K4 is frequently reported in many cancers, including glioblastoma, colon, prostate, and pancreatic cancers. Besides its mainstay pro-survival role in various malignancies, MAP4K4 has been implicated in cancer-associated cachexia. In the present review, we discuss the functional role of MAP4K4 in malignant/non-malignant diseases and cancer-associated cachexia and its possible use in targeted therapy.

5.
Oncogene ; 42(14): 1132-1143, 2023 03.
Article in English | MEDLINE | ID: mdl-36813855

ABSTRACT

Mixed Lineage Kinase 3 (MLK3) is a viable target for neoplastic diseases; however, it is unclear whether its activators or inhibitors can act as anti-neoplastic agents. We reported that the MLK3 kinase activity was higher in triple-negative (TNBC) than in hormone receptor-positive human breast tumors, where estrogen inhibited MLK3 kinase activity and provided a survival advantage to ER+ breast cancer cells. Herein, we show that in TNBC, the higher MLK3 kinase activity paradoxically promotes cancer cell survival. Knockdown of MLK3 or MLK3 inhibitors, CEP-1347 and URMC-099, attenuated tumorigenesis of TNBC cell line and Patient-Derived (PDX) xenografts. The MLK3 kinase inhibitors decreased both the expression and activation of MLK3, PAK1, and NF-kB protein and caused cell death in TNBC breast xenografts. RNA-seq analysis identified several genes downregulated by MLK3 inhibition, and the NGF/TrkA MAPK pathway was significantly enriched in tumors sensitive to growth inhibition by MLK3 inhibitors. The TNBC cell line unresponsive to kinase inhibitor had substantially lower TrkA, and overexpression of TrkA restored the sensitivity to MLK3 inhibition. These results suggest that the functions of MLK3 in breast cancer cells depend on downstream targets in TNBC tumors expressing TrkA, and MLK3 kinase inhibition may provide a novel targeted therapy.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , MAP Kinase Kinase Kinases/metabolism , Estrogens , Receptor Protein-Tyrosine Kinases , Mitogen-Activated Protein Kinase Kinase Kinase 11
6.
Proc Natl Acad Sci U S A ; 119(38): e2205454119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095190

ABSTRACT

Trastuzumab is the first-line therapy for human epidermal growth factor receptor 2-positive (HER2+) breast cancer, but often patients develop acquired resistance. Although other agents are in clinical use to treat trastuzumab-resistant (TR) breast cancer; still, the patients develop recurrent metastatic disease. One of the primary mechanisms of acquired resistance is the shedding/loss of the HER2 extracellular domain, where trastuzumab binds. We envisioned any new agent acting downstream of the HER2 should overcome trastuzumab resistance. The mixed lineage kinase 3 (MLK3) activation by trastuzumab is necessary for promoting cell death in HER2+ breast cancer. We designed nanoparticles loaded with MLK3 agonist ceramide (PPP-CNP) and tested their efficacy in sensitizing TR cell lines, patient-derived organoids, and patient-derived xenograft (PDX). The PPP-CNP activated MLK3, its downstream JNK kinase activity, and down-regulated AKT pathway signaling in TR cell lines and PDX. The activation of MLK3 and down-regulation of AKT signaling by PPP-CNP induced cell death and inhibited cellular proliferation in TR cells and PDX. The apoptosis in TR cells was dependent on increased CD70 protein expression and caspase-9 and caspase-3 activities by PPP-CNP. The PPP-CNP treatment alike increased the expression of CD70, CD27, cleaved caspase-9, and caspase-3 with a concurrent tumor burden reduction of TR PDX. Moreover, the expressions of CD70 and ceramide levels were lower in TR than sensitive HER2+ human breast tumors. Our in vitro and preclinical animal models suggest that activating the MLK3-CD70 axis by the PPP-CNP could sensitize/overcome trastuzumab resistance in HER2+ breast cancer.


Subject(s)
Antineoplastic Agents, Immunological , Breast Neoplasms , CD27 Ligand , Drug Resistance, Neoplasm , MAP Kinase Kinase Kinases , Nanoparticles , Trastuzumab , Animals , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Breast Neoplasms/drug therapy , CD27 Ligand/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Ceramides/chemistry , Female , Humans , MAP Kinase Kinase Kinases/metabolism , Mice , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/analysis , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Xenograft Model Antitumor Assays , Mitogen-Activated Protein Kinase Kinase Kinase 11
7.
Cell Death Dis ; 13(7): 581, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35789155

ABSTRACT

The incidence and mortality of hepatocellular carcinoma (HCC) are on a rise in the Western countries including US, attributed mostly to late detection. Sorafenib has been the first-line FDA-approved drug for advanced unresectable HCC for almost a decade, but with limited efficacy due to the development of resistance. More recently, several other multi-kinase inhibitors (lenvatinib, cabozantinib, regorafenib), human monoclonal antibody (ramucirumab), and immune checkpoint inhibitors (nivolumab, pembrolizumab) have been approved as systemic therapies. Despite this, the median survival of patients is not significantly increased. Understanding of the molecular mechanism(s) that govern HCC resistance is critically needed to increase efficacy of current drugs and to develop more efficacious ones in the future. Our studies with sorafenib-resistant (soraR) HCC cells using transcription factor RT2 Profiler PCR Arrays revealed an increase in E26 transformation-specific-1 (Ets-1) transcription factor in all soraR cells. HCC TMA studies showed an increase in Ets-1 expression in advanced HCC compared to the normal livers. Overexpression or knocking down Ets-1 modulated sorafenib resistance-related epithelial-mesenchymal transition (EMT), migration, and cell survival. In addition, the soraR cells showed a significant reduction of mitochondrial damage and mitochondrial reactive oxygen species (mROS) generation, which were antagonized by knocking down Ets-1 expression. More in-depth analysis identified GPX-2 as a downstream mediator of Ets-1-induced sorafenib resistance, which was down-regulated by Ets-1 knockdown while other antioxidant pathway genes were not affected. Interestingly, knocking down GPX2 expression significantly increased sorafenib sensitivity in the soraR cells. Our studies indicate the activation of a novel Ets-1-GPX2 signaling axis in soraR cells, targeting which might successfully antagonize resistance and increase efficacy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Proto-Oncogene Protein c-ets-1/genetics , Reactive Oxygen Species , Sorafenib/pharmacology , Transcription Factors
8.
Curr Opin Pharmacol ; 64: 102232, 2022 06.
Article in English | MEDLINE | ID: mdl-35526340

ABSTRACT

Hepatocellular carcinoma (HCC) is an inflammation-induced malignant disease of the liver. Abundant expression of immune checkpoint proteins has been reported in HCCs, which contribute to immune cell dysfunction and HCC progression. Immune checkpoint inhibitors as monotherapy or combination therapy have been approved by Food and Drug Administration for advanced HCCs. However, the median survival has not significantly improved, suggesting the need for exploring additional mechanisms to increase efficacy. Metabolic reprogramming is one of the mechanisms by which checkpoint proteins promote tumor growth and immune cell dysfunction. This review provides an insight into the role of immune checkpoint proteins on metabolic reprogramming in tumor and immune cells. An in-depth understating of these could help in the development of more efficacious and long-term therapies for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Proteins , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , United States
9.
Proc Natl Acad Sci U S A ; 119(18): e2200143119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35476525

ABSTRACT

There is currently no effective treatment for pancreatic ductal adenocarcinoma (PDAC). While palliative chemotherapy offers a survival benefit to most patients, nearly all will eventually progress on treatment and long-term survivability remains poor. Given the lack of subsequent line treatment options, in this study, we sought to identify novel strategies to prevent, delay, or overcome resistance to gemcitabine, one of the most widely used medications in PDAC. Using a combination of single-cell RNA sequencing and high-throughput proteomic analysis, we identified a subset of gemcitabine-resistant tumor cells enriched for calcium/calmodulin signaling. Pharmacologic inhibition of calcium-dependent calmodulin activation led to the rapid loss of drug-resistant phenotypes in vitro, which additional single-cell RNA sequencing identified was due to impaired activation of the RAS/ERK signaling pathway. Consistent with these observations, calcium chelation or depletion of calcium in the culture media also impaired ERK activation in gemcitabine-resistant cells, and restored therapeutic responses to gemcitabine in vitro. We observed similar results using calcium channel blockers (CCBs) such as amlodipine, which inhibited prosurvival ERK signaling in vitro and markedly enhanced therapeutic responses to gemcitabine in both orthotopic xenografts and transgenic models of PDAC. Combined, these results offer insight into a potential means of gemcitabine resistance and suggest that select CCBs may provide a clinical benefit to PDAC patients receiving gemcitabine-based chemotherapy.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Amlodipine/pharmacology , Amlodipine/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Calmodulin , Deoxycytidine/analogs & derivatives , Humans , Pancreatic Neoplasms/pathology , United States , Gemcitabine , Pancreatic Neoplasms
10.
Oncogene ; 40(43): 6153-6165, 2021 10.
Article in English | MEDLINE | ID: mdl-34511598

ABSTRACT

MAP4K4 is a Ste20 member and reported to play important roles in various pathologies, including in cancer. However, the mechanism by which MAP4K4 promotes pancreatic cancer is not fully understood. It is suggested that MAP4K4 might function as a cancer promoter via specific downstream target(s) in an organ-specific manner. Here we identified MLK3 as a direct downstream target of MAP4K4. The MAP4K4 and MLK3 associates with each other, and MAP4K4 phosphorylates MLK3 on Thr738 and increases MLK3 kinase activity and downstream signaling. The phosphorylation of MLK3 by MAP4K4 promotes pancreatic cancer cell proliferation, migration, and colony formation. Moreover, MAP4K4 is overexpressed in human pancreatic tumors and directly correlates with the disease progression. The MAP4K4-specific pharmacological inhibitor, GNE-495, impedes pancreatic cancer cell growth, migration, induces cell death, and arrests cell cycle progression. Additionally, the GNE-495 reduced the tumor burden and extended survival of the KPC mice with pancreatic cancer. The MAP4K4 inhibitor also reduced MAP4K4 protein expression, tumor stroma, and induced cell death in murine pancreatic tumors. These findings collectively suggest that MLK3 phosphorylation by MAP4K4 promotes pancreatic cancer, and therefore therapies targeting MAP4K4 might alleviate the pancreatic cancer tumor burden in patients.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Kinase Kinases/metabolism , Pancreatic Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Up-Regulation , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Mice , Neoplasm Transplantation , Pancreatic Neoplasms/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/chemistry , Threonine/chemistry , Mitogen-Activated Protein Kinase Kinase Kinase 11
11.
Cancer Lett ; 515: 1-13, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34052323

ABSTRACT

The transcription factor Glioma-Associated Oncogene Homolog 1 (GLI1) is activated by sonic hedgehog (SHH) cascade and is an established driver of pancreatic ductal adenocarcinoma (PDAC). However, therapies targeting upstream hedgehog signaling have shown little to no efficacy in clinical trials. Here, we identify Mixed Lineage Kinase 3 (MLK3) as a druggable regulator of oncogenic GLI1. Earlier, we reported that MLK3 phosphorylated a peptidyl-prolyl isomerase PIN1 on the S138 site, and the PIN1-pS138 translocated to the nucleus. In this report, we identify GLI1 as one of the targets of PIN1-pS138 and demonstrate that PIN1-pS138 is upregulated in human PDAC and strongly associates with the upregulation of GLI1 and MLK3 expression. Moreover, we also identified two new phosphorylation sites on GLI1, T394, and S1089, which are directly phosphorylated by MLK3 to promote GLI1 nuclear translocation, transcriptional activity, and cell proliferation. Additionally, pharmacological inhibition of MLK3 by CEP-1347 promoted apoptosis in PDAC cell lines, reduced tumor burden, extended survival, and reduced GLI1 expression in the Pdx1-Cre x LSL-KRASG12D x LSL-TP53R172H (KPC) mouse model of PDAC. These findings collectively suggest that MLK3 is an important regulator of oncogenic GLI1 and that therapies targeting MLK3 warrant consideration in the management of PDAC patients.


Subject(s)
MAP Kinase Kinase Kinases/genetics , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Pancreatic Neoplasms/genetics , Zinc Finger Protein GLI1/genetics , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease Models, Animal , Humans , Mice , Pancreatic Neoplasms/pathology , Phosphorylation/genetics , Signal Transduction/genetics , Transcription, Genetic/genetics , Mitogen-Activated Protein Kinase Kinase Kinase 11
12.
Drug Discov Today ; 26(4): 951-967, 2021 04.
Article in English | MEDLINE | ID: mdl-33450394

ABSTRACT

Host immunity has an essential role in the clinical management of cancers. Therefore, it is advantageous to choose therapies that can promote tumor cell death and concurrently boost host immunity. The dynamic tumor microenvironment (TME) determines whether an antineoplastic drug will elicit favorable or disparaging immune responses from tumor-infiltrating lymphocytes (TILs). CD8+ T cells are one of the primary tumor-infiltrating immune cells that deliver antitumor responses. Here, we review the influence of various factors in the TME on CD8+ T cell exhaustion and survival, and possible strategies for restoring CD8+ T cell effector function through immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunomodulating Agents , Lymphocytes, Tumor-Infiltrating/immunology , Tumor Microenvironment/immunology , Cell Survival , Cytotoxicity, Immunologic , Humans , Immunomodulating Agents/immunology , Immunomodulating Agents/pharmacology , Immunotherapy/methods
13.
Pharmacol Ther ; 219: 107704, 2021 03.
Article in English | MEDLINE | ID: mdl-33045253

ABSTRACT

Protein kinases are the second most sought-after G-protein coupled receptors as drug targets because of their overexpression, mutations, and dysregulated catalytic activities in various pathological conditions. Till 2019, 48 protein kinase inhibitors have received FDA approval for the treatment of multiple illnesses, of which the majority of them are indicated for different malignancies. One of the attractive sub-group of protein kinases that has attracted attention for drug development is the family members of MAPKs that are recognized to play significant roles in different cancers. Several inhibitors have been developed against various MAPK members; however, none of them as monotherapy has shown sustainable efficacy. One of the MAPK members, called Mixed Lineage Kinase 3 (MLK3), has attracted considerable attention due to its role in inflammation and neurodegenerative diseases; however, its role in cancer is an emerging area that needs more investigation. Recent advances have shown that MLK3 plays a role in cancer cell survival, migration, drug resistance, cell death, and tumor immunity. This review describes how MLK3 regulates different MAPK pathways, cancer cell growth and survival, apoptosis, and host's immunity. We also discuss how MLK3 inhibitors can potentially be used along with immunotherapy for different malignancies.


Subject(s)
MAP Kinase Kinase Kinases , Neoplasms , Apoptosis , Cell Transformation, Neoplastic , Humans , Neoplasms/drug therapy , Mitogen-Activated Protein Kinase Kinase Kinase 11
14.
Mol Pharmacol ; 99(1): 1-16, 2021 01.
Article in English | MEDLINE | ID: mdl-33130557

ABSTRACT

Aberrant activation of Wnt/ß-catenin axis occurs in several gastrointestinal malignancies due to inactivating mutations of adenomatous polyposis coli (in colorectal cancer) or activating mutations of ß-catenin itself [in hepatocellular carcinoma (HCC)]. These lead to ß-catenin stabilization, increase in ß-catenin/T-cell factor (TCF)-mediated transcriptional activation, and target gene expression, many of which are involved in tumor progression. While studying pharmaceutical agents that can target ß-catenin in cancer cells, we observed that the plant compound berberine (BBR), a potent activator of AMP-activated protein kinase (AMPK), can reduce ß-catenin expression and downstream signaling in HCC cells in a dose-dependent manner. More in-depth analyses to understand the mechanism revealed that BBR-induced reduction of ß-catenin occurs independently of AMPK activation and does not involve transcriptional or post-translational mechanisms. Pretreatment with protein synthesis inhibitor cycloheximide antagonized BBR-induced ß-catenin reduction, suggesting that BBR affects ß-catenin translation. BBR treatment also antagonized mammalian target of rapamycin (mTOR) activity and was associated with increased recruitment of eukaryotic translation initiation factor 4E-binding protein (4E-BP) 1 in the translational complex, which was revealed by 7-methyl-cap-binding assays, suggesting inhibition of cap-dependent translation. Interestingly, knocking down 4E-BP1 and 4E-BP2 significantly attenuated BBR-induced reduction of ß-catenin levels and expression of its downstream target genes. Moreover, cells with 4E-BP knockdown were resistant to BBR-induced cell death and were resensitized to BBR after pharmacological inhibition of ß-catenin. Our findings indicate that BBR antagonizes ß-catenin pathway by inhibiting ß-catenin translation and mTOR activity and thereby reduces HCC cell survival. These also suggest that BBR could be used for targeting HCCs that express mutated/activated ß-catenin variants that are currently undruggable. SIGNIFICANCE STATEMENT: ß-catenin signaling is aberrantly activated in different gastrointestinal cancers, including hepatocellular carcinoma, which is currently undruggable. In this study we describe a novel mechanism of targeting ß-catenin translation via utilizing a plant compound, berberine. Our findings provide a new avenue of targeting ß-catenin axis in cancer, which can be utilized toward the designing of effective therapeutic strategies to combat ß-catenin-dependent cancers.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Berberine/pharmacology , Carcinoma, Hepatocellular/metabolism , Cell Cycle Proteins/metabolism , Eukaryotic Initiation Factors/metabolism , Liver Neoplasms/metabolism , beta Catenin/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Carcinoma, Hepatocellular/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Eukaryotic Initiation Factors/antagonists & inhibitors , Eukaryotic Initiation Factors/genetics , HEK293 Cells , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Protein Biosynthesis/drug effects , Protein Biosynthesis/physiology , beta Catenin/antagonists & inhibitors , beta Catenin/genetics
15.
Cancers (Basel) ; 12(8)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32824207

ABSTRACT

Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and ß-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.

16.
J Immunother Cancer ; 8(2)2020 08.
Article in English | MEDLINE | ID: mdl-32759234

ABSTRACT

BACKGROUND: The mitogen-activated protein kinases (MAPKs) are important for T cell survival and their effector function. Mixed lineage kinase 3 (MLK3) (MAP3K11) is an upstream regulator of MAP kinases and emerging as a potential candidate for targeted cancer therapy; yet, its role in T cell survival and effector function is not known. METHODS: T cell phenotypes, apoptosis and intracellular cytokine expressions were analyzed by flow cytometry. The apoptosis-associated gene expressions in CD8+CD38+ T cells were measured using RT2 PCR array. In vivo effect of combined blockade of MLK3 and CD70 was analyzed in 4T1 tumor model in immunocompetent mice. The serum level of tumor necrosis factor-α (TNFα) was quantified by enzyme-linked immunosorbent assay. RESULTS: We report that genetic loss or pharmacological inhibition of MLK3 induces CD70-TNFα-TNFRSF1a axis-mediated apoptosis in CD8+ T cells. The genetic loss of MLK3 decreases CD8+ T cell population, whereas CD4+ T cells are partially increased under basal condition. Moreover, the loss of MLK3 induces CD70-mediated apoptosis in CD8+ T cells but not in CD4+ T cells. Among the activated CD8+ T cell phenotypes, CD8+CD38+ T cell population shows more than five fold increase in apoptosis due to loss of MLK3, and the expression of TNFRSF1a is significantly higher in CD8+CD38+ T cells. In addition, we observed that CD70 is an upstream regulator of TNFα-TNFRSF1a axis and necessary for induction of apoptosis in CD8+ T cells. Importantly, blockade of CD70 attenuates apoptosis and enhances effector function of CD8+ T cells from MLK3-/- mice. In immune-competent breast cancer mouse model, pharmacological inhibition of MLK3 along with CD70 increased tumor infiltration of cytotoxic CD8+ T cells, leading to reduction in tumor burden largely via mitochondrial apoptosis. CONCLUSION: Together, these results demonstrate that MLK3 plays an important role in CD8+ T cell survival and effector function and MLK3-CD70 axis could serve as a potential target in cancer.


Subject(s)
CD27 Ligand/metabolism , CD8-Positive T-Lymphocytes/immunology , MAP Kinase Kinase Kinases/metabolism , Animals , Cell Line, Tumor , Female , Humans , Longevity , Mice , Mitogen-Activated Protein Kinase Kinase Kinase 11
17.
Proc Natl Acad Sci U S A ; 117(14): 7961-7970, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32209667

ABSTRACT

Mixed lineage kinase 3 (MLK3), also known as MAP3K11, was initially identified in a megakaryocytic cell line and is an emerging therapeutic target in cancer, yet its role in immune cells is not known. Here, we report that loss or pharmacological inhibition of MLK3 promotes activation and cytotoxicity of T cells. MLK3 is abundantly expressed in T cells, and its loss alters serum chemokines, cytokines, and CD28 protein expression on T cells and its subsets. MLK3 loss or pharmacological inhibition induces activation of T cells in in vitro, ex vivo, and in vivo conditions, irrespective of T cell activating agents. Conversely, overexpression of MLK3 decreases T cell activation. Mechanistically, loss or inhibition of MLK3 down-regulates expression of a prolyl-isomerase, Ppia, which is directly phosphorylated by MLK3 to increase its isomerase activity. Moreover, MLK3 also phosphorylates nuclear factor of activated T cells 1 (NFATc1) and regulates its nuclear translocation via interaction with Ppia, and this regulates T cell effector function. In an immune-competent mouse model of breast cancer, MLK3 inhibitor increases Granzyme B-positive CD8+ T cells and decreases MLK3 and Ppia gene expression in tumor-infiltrating T cells. Likewise, the MLK3 inhibitor in pan T cells, isolated from breast cancer patients, also increases cytotoxic CD8+ T cells. These results collectively demonstrate that MLK3 plays an important role in T cell biology, and targeting MLK3 could serve as a potential therapeutic intervention via increasing T cell cytotoxicity in cancer.


Subject(s)
Breast Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , MAP Kinase Kinase Kinases/metabolism , Mammary Neoplasms, Experimental/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Breast Neoplasms/blood , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor/transplantation , Cyclophilin A/metabolism , Female , Humans , Lymphocyte Activation/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/genetics , Mammary Neoplasms, Experimental/blood , Mammary Neoplasms, Experimental/pathology , Mice , NFATC Transcription Factors/metabolism , Phosphorylation/drug effects , Phosphorylation/immunology , Primary Cell Culture , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Pyrroles/pharmacology , Pyrroles/therapeutic use , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/metabolism , Tumor Escape/drug effects , Mitogen-Activated Protein Kinase Kinase Kinase 11
18.
Pharmaceuticals (Basel) ; 13(1)2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31936067

ABSTRACT

Mitogen-activated protein kinase (MAPK) signaling networks serve to regulate a wide range of physiologic and cancer-associated cell processes. For instance, a variety of oncogenic mutations often lead to hyperactivation of MAPK signaling, thereby enhancing tumor cell proliferation and disease progression. As such, several components of the MAPK signaling network have been proposed as viable targets for cancer therapy. However, the contributions of MAPK signaling extend well beyond the tumor cells, and several MAPK effectors have been identified as key mediators of the tumor microenvironment (TME), particularly with respect to the local immune infiltrate. In fact, a blockade of various MAPK signals has been suggested to fundamentally alter the interaction between tumor cells and T lymphocytes and have been suggested a potential adjuvant to immune checkpoint inhibition in the clinic. Therefore, in this review article, we discuss the various mechanisms through which MAPK family members contribute to T-cell biology, as well as circumstances in which MAPK inhibition may potentiate or limit cancer immunotherapy.

19.
Oncogene ; 39(3): 722, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31530933

ABSTRACT

The original version of this Article did not acknowledge Pradeep Sathyanarayana as an author. His affiliation is Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA.

20.
Oncogene ; 38(19): 3569-3584, 2019 05.
Article in English | MEDLINE | ID: mdl-30664689

ABSTRACT

Mixed lineage kinase 3 (MLK3), a MAP3K member has been envisioned as a viable drug target in cancer, yet its detailed function and signaling is not fully elucidated. We identified that MLK3 tightly associates with an oncogene, PAK1. Mammalian PAK1 being a Ste20 (MAP4K) member, we tested whether it is an upstream regulator of MLK3. In contrast to our hypothesis, MLK3 activated PAK1 kinase activity directly, as well as in the cells. Although, MLK3 can phosphorylate PAK1 on Ser133 and Ser204 sites, PAK1S133A mutant is constitutively active, whereas, PAK1S204A is not activated by MLK3. Stable overexpression of PAK1S204A in breast cancer cells, impedes migration, invasion, and NFĸB activity. In vivo breast cancer cell tumorigenesis is significantly reduced in tumors expressing PAK1S204A mutant. These results suggest that mammalian PAK1 does not act as a MAP4K and MLK3-induced direct activation of PAK1 plays a key role in breast cancer tumorigenesis.


Subject(s)
Breast Neoplasms/pathology , MAP Kinase Kinase Kinases/metabolism , p21-Activated Kinases/metabolism , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Enzyme Activation , Female , Humans , MAP Kinase Kinase Kinases/genetics , Mice, SCID , Phosphorylation , Serine/metabolism , Xenograft Model Antitumor Assays , p21-Activated Kinases/chemistry , p21-Activated Kinases/genetics , Mitogen-Activated Protein Kinase Kinase Kinase 11
SELECTION OF CITATIONS
SEARCH DETAIL
...