Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 354: 141591, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460846

ABSTRACT

The sustainable utilization of resources motivate us to create eco-friendly processes for synthesizing novel carbon nanomaterials from waste biomass by minimizing chemical usage and reducing energy demands. By keeping sustainability as a prime focus in the present work, we have made the effective management of Parthenium weeds by converting them into carbon-based nanomaterial through hydrothermal treatment followed by heating in a tube furnace under the nitrogen atmosphere. The XPS studies confirm the natural presence of nitrogen and oxygen-containing functional groups in the biomass-derived carbon. The nanostructure has adopted a layered two-dimensional structure, clearly indicated through HRTEM images. Further, the nanomaterials are analyzed for their ability towards the electrochemical detection of mercury, with a detection limit of 6.17 µM, while the limit of quantification and sensitivity was found to be 18.7 µM and 0.4723 µM µA-1 cm-2, respectively. The obtained two-dimensional architecture has increased the surface area, while the nitrogen and oxygen functional groups act as an active site for sensing the mercury ions. This study will open a new door for developing metal-free catalysts through a green and sustainable approach by recycling and utilization of waste biomass.


Subject(s)
Biosensing Techniques , Mercury , Nanostructures , Parthenium hysterophorus , Biosensing Techniques/methods , Nanostructures/chemistry , Carbon/chemistry , Ions , Nitrogen/chemistry , Oxygen
2.
Chemosphere ; 346: 140653, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949185

ABSTRACT

This study uses waste coconut husk to synthesize carbon quantum dots decorated graphene-like structure for sustainable detection and removal of ofloxacin. The XRD spectrum shows the carbon nanomaterial's layered structure with turbostratic carbon stacking on its surface. The FESEM and HRTEM studies claim the successful development of quantum dots decorated 2D layered structure of carbon nanomaterial. The functionalization of sulfur and nitrogen is well observed and studied through XPS, while Raman spectra have provided insight into the surface topology of the as-synthesized nanostructure. The BET surface area was found to be 1437.12 m2/g with a microporous structure (pore width 2.0 nm) which interestingly outcompete many reported carbon-based nanomaterials such as graphene oxide, reduced graphene oxide and quantum dots. The detection and removal processes are monitored through UV-visible spectroscopy and the obtained detection limit and adsorption capacity were 2.7 nM and 393.94 mg/L respectively. Additionally, 1 mg carbon nanomaterial has removed 49 % ofloxacin from water in just 1 h. In this way, this study has successfully managed the coconut husk waste after its utilization for environmental remediation purposes.


Subject(s)
Carbon , Nanostructures , Carbon/chemistry , Cocos , Nitrogen/chemistry , Sulfur
3.
Environ Res ; 231(Pt 2): 116151, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37196695

ABSTRACT

Parthenium hysterophorus, one of the seven most hazardous weeds is widely known for its allergic, respiratory and skin-related disorders. It is also known to affect biodiversity and ecology. For eradication of the weed, its effective utilization for the successful synthesis of carbon-based nanomaterial is a potent management strategy. In this study, reduced graphene oxide (rGO) was synthesized from weed leaf extract through a hydrothermal-assisted carbonization method. The crystallinity and geometry of the as-synthesized nanostructure are confirmed from the X-ray diffraction study, while the chemical architecture of the nanomaterial is ascertained through X-ray photoelectron spectroscopy. The stacking of flat graphene-like layers with a size range of ∼200-300 nm is visualized through high-resolution transmission electron microscopy images. Further, the as-synthesized carbon nanomaterial is advanced as an effective and highly sensitive electrochemical biosensor for dopamine, a vital neurotransmitter of the human brain. Nanomaterial oxidizes dopamine at a much lower potential (0.13 V) than other metal-based nanocomposites. Moreover, the obtained sensitivity (13.75 and 3.31 µA µM-1 cm-2), detection limit (0.6 and 0.8 µM), the limit of quantification (2.2 and 2.7 µM) and reproducibility calculated through cyclic voltammetry/differential pulse voltammetry respectively outcompete many metal-based nanocomposites that were previously used for the sensing of dopamine. This study boosts the research on the metal-free carbon-based nanomaterial derived from waste plant biomass.


Subject(s)
Carbon , Dopamine , Humans , Dopamine/chemistry , Reproducibility of Results , Electrochemical Techniques/methods , Metals , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL