Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomed Res Int ; 2023: 6996307, 2023.
Article in English | MEDLINE | ID: mdl-36685671

ABSTRACT

Several studies have been done to identify comorbidities of COVID-19. In this work, we developed an analytical bioinformatics framework to reveal COVID-19 comorbidities, their genomic associations, and molecular mechanisms accomplishing transcriptomic analyses of the RNA-seq datasets provided by the Gene Expression Omnibus (GEO) database, where normal and infected tissues were evaluated. Using the framework, we identified 27 COVID-19 correlated diseases out of 7,092 collected diseases. Analyzing clinical and epidemiological research, we noticed that our identified 27 diseases are associated with COVID-19, where hypertension, diabetes, obesity, and lung cancer are observed several times in COVID-19 patients. Therefore, we selected the above four diseases and performed assorted analyses to demonstrate the association between COVID-19 and hypertension, diabetes, obesity, and lung cancer as comorbidities. We investigated genomic associations with the cross-comparative analysis and Jaccard's similarity index, identifying shared differentially expressed genes (DEGs) and linking DEGs of COVID-19 and the comorbidities, in which we identified hypertension as the most associated illness. We also revealed molecular mechanisms by identifying statistically significant ten pathways and ten ontologies. Moreover, to understand cellular physiology, we did protein-protein interaction (PPI) analyses among the comorbidities and COVID-19. We also used the degree centrality method and identified ten biomarker hub proteins (IL1B, CXCL8, FN1, MMP9, CXCL10, IL1A, IRF7, VWF, CXCL9, and ISG15) that associate COVID-19 with the comorbidities. Finally, we validated our findings by searching the published literature. Thus, our analytical approach elicited interconnections between COVID-19 and the aforementioned comorbidities in terms of remarkable DEGs, pathways, ontologies, PPI, and biomarker hub proteins.


Subject(s)
COVID-19 , Hypertension , Humans , COVID-19/epidemiology , COVID-19/genetics , Genomics , Computational Biology , Hypertension/epidemiology , Hypertension/genetics , Obesity/epidemiology , Obesity/genetics
2.
Bioinform Biol Insights ; 16: 11779322221145373, 2022.
Article in English | MEDLINE | ID: mdl-36582393

ABSTRACT

Prion disorder (PD) is caused by misfolding and the formation of clumps of proteins in the brain, notably Prion proteins resulting in a steady decrease in brain function. Early detection of PD is difficult due to its unpredictable nature, and diagnosis is limited regarding specificity and sensitivity. Considering the uncertainties, the current study used network-based integrative system biology approaches to reveal promising molecular biomarkers and therapeutic targets for PD. In this study, brain transcriptomics gene expression microarray datasets (GSE160208 and GSE124571) of human PD were evaluated and 35 differentially expressed genes (DEGs) were identified. By employing network-based protein-protein interaction (PPI) analysis on these DEGs, 10 central hub proteins, including SPP1, FKBP5, HPRT1, CDKN1A, BAG3, HSPB1, SYK, TNFRSF1A, PTPN6, and CD44, were identified. Employing bioinformatics approaches, a variety of transcription factors (EGR1, SSRP1, POLR2A, TARDP, and NR2F1) and miRNAs (hsa-mir-8485, hsa-mir-148b-3p, hsa-mir-4295, hsa-mir-26b-5p, and hsa-mir-16-5p) were predicted. EGR1 was found as the most imperative transcription factor (TF), and hsa-mir-16-5p and hsa-mir-148b-3p were found as the most crucial miRNAs targeted in PD. Finally, resveratrol and hypochlorous acid were predicted as possible therapeutic drugs for PD. This study could be helpful in better understanding of molecular systems and prospective pharmacological targets for developing effective PD treatments.

3.
Cardiovasc Ther ; 2022: 9034996, 2022.
Article in English | MEDLINE | ID: mdl-36035865

ABSTRACT

Background: Cardiovascular disease (CVD) is the combination of coronary heart disease, myocardial infarction, rheumatic heart disease, and peripheral vascular disease of the heart and blood vessels. It is one of the leading deadly diseases that causes one-third of the deaths yearly in the globe. Additionally, the risk factors associated with it make the situation more complex for cardiovascular patients, which lead them towards mortality, but the genetic association between CVD and its risk factors is not clearly explored in the global literature. We addressed this issue and explored the linkage between CVD and its risk factors. Methods: We developed an analytical approach to reveal the risk factors and their linkages with CVD. We used GEO microarray datasets for the CVD and other risk factors in this study. We performed several analyses including gene expression analysis, diseasome analysis, protein-protein interaction (PPI) analysis, and pathway analysis for discovering the relationship between CVD and its risk factors. We also examined the validation of our study using gold benchmark databases OMIM, dbGAP, and DisGeNET. Results: We observed that the number of 32, 17, 53, 70, and 89 differentially expressed genes (DEGs) is overlapped between CVD and its risk factors of hypertension (HTN), type 2 diabetes (T2D), hypercholesterolemia (HCL), obesity, and aging, respectively. We identified 10 major hub proteins (FPR2, TNF, CXCL8, CXCL1, IL1B, VEGFA, CYBB, PTGS2, ITGAX, and CCR5), 12 significant functional pathways, and 11 gene ontological pathways that are associated with CVD. We also found the connection of CVD with its risk factors in the gold benchmark databases. Our experimental outcomes indicate a strong association of CVD with its risk factors of HTN, T2D, HCL, obesity, and aging. Conclusions: Our computational approach explored the genetic association of CVD with its risk factors by identifying the significant DEGs, hub proteins, and signaling and ontological pathways. The outcomes of this study may be further used in the lab-based analysis for developing the effective treatment strategies of CVD.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Computational Biology , Gene Expression Profiling , Humans , Obesity , Risk Factors
4.
Comput Biol Med ; 138: 104859, 2021 11.
Article in English | MEDLINE | ID: mdl-34601390

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) still tends to propagate and increase the occurrence of COVID-19 across the globe. The clinical and epidemiological analyses indicate the link between COVID-19 and Neurological Diseases (NDs) that drive the progression and severity of NDs. Elucidating why some patients with COVID-19 influence the progression of NDs and patients with NDs who are diagnosed with COVID-19 are becoming increasingly sick, although others are not is unclear. In this research, we investigated how COVID-19 and ND interact and the impact of COVID-19 on the severity of NDs by performing transcriptomic analyses of COVID-19 and NDs samples by developing the pipeline of bioinformatics and network-based approaches. The transcriptomic study identified the contributing genes which are then filtered with cell signaling pathway, gene ontology, protein-protein interactions, transcription factor, and microRNA analysis. Identifying hub-proteins using protein-protein interactions leads to the identification of a therapeutic strategy. Additionally, the incorporation of comorbidity interactions score enhances the identification beyond simply detecting novel biological mechanisms involved in the pathophysiology of COVID-19 and its NDs comorbidities. By computing the semantic similarity between COVID-19 and each of the ND, we have found gene-based maximum semantic score between COVID-19 and Parkinson's disease, the minimum semantic score between COVID-19 and Multiple sclerosis. Similarly, we have found gene ontology-based maximum semantic score between COVID-19 and Huntington disease, minimum semantic score between COVID-19 and Epilepsy disease. Finally, we validated our findings using gold-standard databases and literature searches to determine which genes and pathways had previously been associated with COVID-19 and NDs.


Subject(s)
COVID-19 , MicroRNAs , Nervous System Diseases , Computational Biology , Humans , Nervous System Diseases/genetics , SARS-CoV-2
5.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: mdl-33406529

ABSTRACT

Glioblastoma (GBM) is a common malignant brain tumor which often presents as a comorbidity with central nervous system (CNS) disorders. Both CNS disorders and GBM cells release glutamate and show an abnormality, but differ in cellular behavior. So, their etiology is not well understood, nor is it clear how CNS disorders influence GBM behavior or growth. This led us to employ a quantitative analytical framework to unravel shared differentially expressed genes (DEGs) and cell signaling pathways that could link CNS disorders and GBM using datasets acquired from the Gene Expression Omnibus database (GEO) and The Cancer Genome Atlas (TCGA) datasets where normal tissue and disease-affected tissue were examined. After identifying DEGs, we identified disease-gene association networks and signaling pathways and performed gene ontology (GO) analyses as well as hub protein identifications to predict the roles of these DEGs. We expanded our study to determine the significant genes that may play a role in GBM progression and the survival of the GBM patients by exploiting clinical and genetic factors using the Cox Proportional Hazard Model and the Kaplan-Meier estimator. In this study, 177 DEGs with 129 upregulated and 48 downregulated genes were identified. Our findings indicate new ways that CNS disorders may influence the incidence of GBM progression, growth or establishment and may also function as biomarkers for GBM prognosis and potential targets for therapies. Our comparison with gold standard databases also provides further proof to support the connection of our identified biomarkers in the pathology underlying the GBM progression.


Subject(s)
Brain Neoplasms/genetics , Central Nervous System/metabolism , Gene Regulatory Networks , Glioblastoma/genetics , Machine Learning , Neoplasm Proteins/genetics , Atlases as Topic , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Central Nervous System/pathology , Computational Biology/methods , Datasets as Topic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Ontology , Glioblastoma/metabolism , Glioblastoma/mortality , Glioblastoma/pathology , Glutamic Acid/metabolism , Humans , Kaplan-Meier Estimate , Molecular Sequence Annotation , Neoplasm Proteins/classification , Neoplasm Proteins/metabolism , Proportional Hazards Models , Signal Transduction
6.
Brief Bioinform ; 22(2): 1175-1196, 2021 03 22.
Article in English | MEDLINE | ID: mdl-32778874

ABSTRACT

The novel coronavirus (2019-nCoV) has recently emerged, causing COVID-19 outbreaks and significant societal/global disruption. Importantly, COVID-19 infection resembles SARS-like complications. However, the lack of knowledge about the underlying genetic mechanisms of COVID-19 warrants the development of prospective control measures. In this study, we employed whole-genome alignment and digital DNA-DNA hybridization analyses to assess genomic linkage between 2019-nCoV and other coronaviruses. To understand the pathogenetic behavior of 2019-nCoV, we compared gene expression datasets of viral infections closest to 2019-nCoV with four COVID-19 clinical presentations followed by functional enrichment of shared dysregulated genes. Potential chemical antagonists were also identified using protein-chemical interaction analysis. Based on phylogram analysis, the 2019-nCoV was found genetically closest to SARS-CoVs. In addition, we identified 562 upregulated and 738 downregulated genes (adj. P ≤ 0.05) with SARS-CoV infection. Among the dysregulated genes, SARS-CoV shared ≤19 upregulated and ≤22 downregulated genes with each of different COVID-19 complications. Notably, upregulation of BCL6 and PFKFB3 genes was common to SARS-CoV, pneumonia and severe acute respiratory syndrome, while they shared CRIP2, NSG1 and TNFRSF21 genes in downregulation. Besides, 14 genes were common to different SARS-CoV comorbidities that might influence COVID-19 disease. We also observed similarities in pathways that can lead to COVID-19 and SARS-CoV diseases. Finally, protein-chemical interactions suggest cyclosporine, resveratrol and quercetin as promising drug candidates against COVID-19 as well as other SARS-like viral infections. The pathogenetic analyses, along with identified biomarkers, signaling pathways and chemical antagonists, could prove useful for novel drug development in the fight against the current global 2019-nCoV pandemic.


Subject(s)
COVID-19/virology , SARS-CoV-2/pathogenicity , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Antiviral Agents/therapeutic use , COVID-19/complications , Case-Control Studies , Comorbidity , Genome, Viral , Humans , MicroRNAs/metabolism , Severe acute respiratory syndrome-related coronavirus/genetics , Transcription Factors/metabolism , COVID-19 Drug Treatment
7.
Sci Rep ; 10(1): 2795, 2020 02 17.
Article in English | MEDLINE | ID: mdl-32066756

ABSTRACT

Welding generates and releases fumes that are hazardous to human health. Welding fumes (WFs) are a complex mix of metallic oxides, fluorides and silicates that can cause or exacerbate health problems in exposed individuals. In particular, WF inhalation over an extended period carries an increased risk of cancer, but how WFs may influence cancer behaviour or growth is unclear. To address this issue we employed a quantitative analytical framework to identify the gene expression effects of WFs that may affect the subsequent behaviour of the cancers. We examined datasets of transcript analyses made using microarray studies of WF-exposed tissues and of cancers, including datasets from colorectal cancer (CC), prostate cancer (PC), lung cancer (LC) and gastric cancer (GC). We constructed gene-disease association networks, identified signaling and ontological pathways, clustered protein-protein interaction network using multilayer network topology, and analyzed survival function of the significant genes using Cox proportional hazards (Cox PH) model and product-limit (PL) estimator. We observed that WF exposure causes altered expression of many genes (36, 13, 25 and 17 respectively) whose expression are also altered in CC, PC, LC and GC. Gene-disease association networks, signaling and ontological pathways, protein-protein interaction network, and survival functions of the significant genes suggest ways that WFs may influence the progression of CC, PC, LC and GC. This quantitative analytical framework has identified potentially novel mechanisms by which tissue WF exposure may lead to gene expression changes in tissue gene expression that affect cancer behaviour and, thus, cancer progression, growth or establishment.


Subject(s)
Machine Learning , Metabolic Networks and Pathways/drug effects , Neoplasms/genetics , Welding , Air Pollutants, Occupational/toxicity , Computational Biology , Gases/toxicity , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhalation Exposure/adverse effects , Metabolic Networks and Pathways/genetics , Neoplasm Proteins/genetics , Neoplasms/chemically induced , Neoplasms/pathology
8.
Comput Biol Med ; 113: 103385, 2019 10.
Article in English | MEDLINE | ID: mdl-31437626

ABSTRACT

Identification of genes whose regulation of expression is functionally similar in both brain tissue and blood cells could in principle enable monitoring of significant neurological traits and disorders by analysis of blood samples. We thus employed transcriptional analysis of pathologically affected tissues, using agnostic approaches to identify overlapping gene functions and integrating this transcriptomic information with expression quantitative trait loci (eQTL) data. Here, we estimate the correlation of gene expression in the top-associated cis-eQTLs of brain tissue and blood cells in Parkinson's Disease (PD). We introduced quantitative frameworks to reveal the complex relationship of various biasing genetic factors in PD, a neurodegenerative disease. We examined gene expression microarray and RNA-Seq datasets from human brain and blood tissues from PD-affected and control individuals. Differentially expressed genes (DEG) were identified for both brain and blood cells to determine common DEG overlaps. Based on neighborhood-based benchmarking and multilayer network topology approaches we then developed genetic associations of factors with PD. Overlapping DEG sets underwent gene enrichment using pathway analysis and gene ontology methods, which identified candidate common genes and pathways. We identified 12 significantly dysregulated genes shared by brain and blood cells, which were validated using dbGaP (gene SNP-disease linkage) database for gold-standard benchmarking of their significance in disease processes. Ontological and pathway analyses identified significant gene ontology and molecular pathways that indicate PD progression. In sum, we found possible novel links between pathological processes in brain tissue and blood cells by examining cell pathway commonalities, corroborating these associations using well validated datasets. This demonstrates that for brain-related pathologies combining gene expression analysis and blood cell cis-eQTL is a potentially powerful analytical approach. Thus, our methodologies facilitate data-driven approaches that can advance knowledge of disease mechanisms and may, with clinical validation, enable prediction of neurological dysfunction using blood cell transcript profiling.


Subject(s)
Blood Cells/metabolism , Brain/metabolism , Computer Simulation , Databases, Nucleic Acid , Gene Expression Regulation , Parkinson Disease/metabolism , Biomarkers/metabolism , Blood Cells/pathology , Brain/pathology , Genome-Wide Association Study , Humans , Parkinson Disease/pathology
9.
Comput Biol Med ; 108: 142-149, 2019 05.
Article in English | MEDLINE | ID: mdl-31005006

ABSTRACT

BACKGROUND: The welding process releases potentially hazardous gases and fumes, mainly composed of metallic oxides, fluorides and silicates. Long term welding fume (WF) inhalation is a recognized health issue that carries a risk of developing chronic health problems, particularly respiratory system diseases (RSDs). Aside from general airway irritation, WF exposure may drive direct cellular responses in the respiratory system which increase risk of RSD, but these are not well understood. METHODS: We developed a quantitative framework to identify gene expression effects of WF exposure that may affect RSD development. We analyzed gene expression microarray data from WF-exposed tissues and RSD-affected tissues, including chronic bronchitis (CB), asthma (AS), pulmonary edema (PE), lung cancer (LC) datasets. We built disease-gene (diseasome) association networks and identified dysregulated signaling and ontological pathways, and protein-protein interaction sub-network using neighborhood-based benchmarking and multilayer network topology. RESULTS: We observed many genes with altered expression in WF-exposed tissues were also among differentially expressed genes (DEGs) in RSD tissues; for CB, AS, PE and LC there were 34, 27, 50 and 26 genes respectively. DEG analysis, using disease association networks, pathways, ontological analysis and protein-protein interaction sub-network suggest significant links between WF exposure and the development of CB, AS, PE and LC. CONCLUSIONS: Our network-based analysis and investigation of the genetic links of WFs and RSDs confirm a number of genes and gene products are plausible participants in RSD development. Our results are a significant resource to identify causal influences on the development of RSDs, particularly in the context of WF exposure.


Subject(s)
Databases, Genetic , Inhalation Exposure/adverse effects , Lung Diseases/genetics , Models, Genetic , Occupational Exposure/adverse effects , Welding , Gases/adverse effects , Humans , Lung Diseases/chemically induced , Lung Diseases/pathology , Male
10.
PeerJ Comput Sci ; 5: e184, 2019.
Article in English | MEDLINE | ID: mdl-33816837

ABSTRACT

With an increasing demand for stringent security systems, automated identification of individuals based on biometric methods has been a major focus of research and development over the last decade. Biometric recognition analyses unique physiological traits or behavioral characteristics, such as an iris, face, retina, voice, fingerprint, hand geometry, keystrokes or gait. The iris has a complex and unique structure that remains stable over a person's lifetime, features that have led to its increasing interest in its use for biometric recognition. In this study, we proposed a technique incorporating Principal Component Analysis (PCA) based on Discrete Wavelet Transformation (DWT) for the extraction of the optimum features of an iris and reducing the runtime needed for iris template classification. The idea of using DWT behind PCA is to reduce the resolution of the iris template. DWT converts an iris image into four frequency sub-bands. One frequency sub-band instead of four has been used for further feature extraction by using PCA. Our experimental evaluation demonstrates the efficient performance of the proposed technique.

11.
Neurotoxicology ; 71: 93-101, 2019 03.
Article in English | MEDLINE | ID: mdl-30571986

ABSTRACT

BACKGROUND: Welding involves exposure to fumes, gases and radiant energy that can be hazardous to human health. Welding fumes (WFs) comprise a complex mixture of metallic oxides, silicates and fluorides that may result in different health effects. Inhalation of WFs in large quantities over a long periods may pose a risk of developing neurodegenerative diseases (NDGDs), but the nature of this risk is poorly understood. To address this we performed transcriptomic analysis to identify links between WF exposure and NDGDs. METHODS: We developed quantitative frameworks to identify the gene expression relationships of WF exposure and NDGDs. We analyzed gene expression microarray data from fume-exposed tissues and NDGDs including Parkinson's disease (PD), Alzheimer's disease (AD), Lou Gehrig's disease (LGD), Epilepsy disease (ED) and multiple sclerosis disease (MSD) datasets. We constructed disease-gene relationship networks and identified dysregulated pathways, ontological pathways and protein-protein interaction sub-network using multilayer network topology and neighborhood-based benchmarking. RESULTS: We observed that WF associated genes share 18, 16, 13, 19 and 19 differentially expressed genes with PD, AD, LGD, ED and MSD respectively. Gene expression dysregulation along with relationship networks, pathways and ontologic analysis indicate that WFs may be linked to the progression of these NDGDs. CONCLUSIONS: Our developed network-based approach to analysis and investigate the genetic effects of welding fumes on PD, AD, LGD, ED and MSD neurodegenerative diseases could be helpful to understand the causal influences of WF exposure for the progression of the NDGDs.


Subject(s)
Air Pollutants, Occupational/adverse effects , Disease Progression , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/genetics , Occupational Exposure/adverse effects , Welding , Gene Expression , Gene Expression Profiling , Humans , Inhalation Exposure/adverse effects , Neurodegenerative Diseases/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...