Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cochrane Database Syst Rev ; 12: CD015255, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38088821

ABSTRACT

BACKGROUND: Otitis media with effusion (OME) is an accumulation of fluid in the middle ear cavity, common amongst young children. The fluid may cause hearing loss. Although most episodes of OME in children resolve spontaneously within a few months, when persistent it may lead to behavioural problems and a delay in expressive language skills. Management of OME includes watchful waiting, medical, surgical and other treatments, such as autoinflation. Oral or topical steroids are sometimes used to reduce inflammation in the middle ear. OBJECTIVES: To assess the effects (benefits and harms) of topical and oral steroids for OME in children. SEARCH METHODS: We searched the Cochrane ENT Register, CENTRAL, Ovid MEDLINE, Ovid Embase, Web of Science, ClinicalTrials.gov, ICTRP and additional sources for published and unpublished studies on 20 January 2023. SELECTION CRITERIA: We included randomised controlled trials (RCTs) and quasi-randomised trials in children aged 6 months to 12 years with unilateral or bilateral OME. We included studies that compared topical or oral steroids with either placebo or watchful waiting (no treatment). DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes, determined by a multi-stakeholder prioritisation exercise, were: 1) hearing, 2) OME-specific quality of life and 3) systemic corticosteroid side effects. Secondary outcomes were: 1) presence/persistence of OME, 2) other adverse effects (including local nasal effects), 3) receptive language skills, 4) speech development, 5) cognitive development, 6) psychosocial outcomes, 7) listening skills, 8) generic health-related quality of life, 9) parental stress, 10) vestibular function and 11) episodes of acute otitis media. We used GRADE to assess the certainty of evidence. Although we included all measures of hearing assessment, the proportion of children who returned to normal hearing was our preferred method to assess hearing, due to challenges in interpreting the results of mean hearing thresholds. MAIN RESULTS: We included 26 studies in this review (2770 children). Most studies of oral steroids used prednisolone for 7 to 14 days. Studies of topical (nasal) steroids used various preparations (beclomethasone, fluticasone and mometasone) for between two weeks and three months. All studies had at least some concerns regarding risk of bias. Here we report our primary outcomes and main secondary outcome, at the longest reported follow-up. Oral steroids compared to placebo Oral steroids probably result in little or no difference in the proportion of children with normal hearing after 12 months (69.7% of children with steroids, compared to 61.1% of children receiving placebo, risk ratio (RR) 1.14, 95% confidence interval (CI) 0.97 to 1.33; 1 study, 332 participants; moderate-certainty evidence). There is probably little or no difference in OME-related quality of life (mean difference (MD) in OM8-30 score 0.07, 95% CI -0.2 to 0.34; 1 study, 304 participants; moderate-certainty evidence). Oral steroids may reduce the number of children with persistent OME at 6 to 12 months, but the size of the effect was uncertain (absolute risk reduction ranging from 13.3% to 45%, number needed to treat (NNT) of between 3 and 8; low-certainty evidence). The evidence was very uncertain regarding the risk of systemic corticosteroid side effects, and we were unable to conduct any meta-analysis for this outcome. Oral steroids compared to no treatment Oral steroids may result in little or no difference in the persistence of OME after three to nine months (74.5% children receiving steroids versus 73% of those receiving placebo; RR 1.02, 95% CI 0.89 to 1.17; 2 studies, 258 participants; low-certainty evidence). The evidence on adverse effects was very uncertain. We did not identify any evidence on hearing or disease-related quality of life. Topical (intranasal) steroids compared to placebo We did not identify data on the proportion of children who returned to normal hearing. However, the mean change in hearing threshold after two months was -0.3 dB lower (95% CI -6.05 to 5.45; 1 study, 78 participants; very low-certainty evidence). The evidence suggests that nasal steroids make little or no difference to disease-specific quality of life after nine months (OM8-30 score, MD 0.05 higher, 95% CI -0.36 to 0.46; 1 study, 82 participants; low-certainty evidence). The evidence is very uncertain regarding the effect of nasal steroids on persistence of OME at up to one year. Two studies reported this: one showed a potential benefit for nasal steroids, the other showed a benefit with placebo (2 studies, 206 participants). The evidence was also very uncertain regarding the risk of corticosteroid-related side effects, as we were unable to provide a pooled effect estimate. Topical (intranasal) steroids compared to no treatment We did not identify data on the proportion of children who returned to normal hearing. However, the mean difference in final hearing threshold after four weeks was 1.95 dB lower (95% CI -3.85 to -0.05; 1 study, 168 participants; low-certainty evidence). Nasal steroids may reduce the persistence of OME after eight weeks, but the evidence was very uncertain (58.5% of children receiving steroids, compared to 81.3% of children without treatment, RR 0.72, 95% CI 0.57 to 0.91; 2 studies, 134 participants). We did not identify any evidence on disease-related quality of life or adverse effects. AUTHORS' CONCLUSIONS: Overall, oral steroids may have little effect in the treatment of OME, with little improvement in the number of children with normal hearing and no effect on quality of life. There may be a reduction in the proportion of children with persistent disease after 12 months. However, this benefit may be small and must be weighed against the potential for adverse effects associated with oral steroid use. The evidence for nasal steroids was all low- or very low-certainty. It is therefore less clear if nasal steroids have any impact on hearing, quality of life or persistence of OME. Evidence on adverse effects was very limited. OME is likely to resolve spontaneously for most children. The potential benefit of treatment may therefore be small and should be balanced with the risk of adverse effects. Future studies should aim to determine which children are most likely to benefit from treatment, rather than offering interventions to all children.


Subject(s)
Anti-Bacterial Agents , Otitis Media with Effusion , Child , Child, Preschool , Humans , Administration, Intranasal , Adrenal Cortex Hormones/therapeutic use , Anti-Bacterial Agents/therapeutic use , Otitis Media with Effusion/drug therapy , Steroids/adverse effects
2.
Cochrane Database Syst Rev ; 10: CD015254, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37870130

ABSTRACT

BACKGROUND: Otitis media with effusion (OME) is an accumulation of fluid in the middle ear cavity, common amongst young children. The fluid may cause hearing loss. When persistent, it may lead to developmental delay, social difficulty and poor quality of life. Management of OME includes watchful waiting, autoinflation, medical and surgical treatment. Antibiotics are sometimes used to treat any bacteria present in the effusion, or associated biofilms. OBJECTIVES: To assess the effects (benefits and harms) of oral antibiotics for otitis media with effusion (OME) in children. SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane ENT Register, CENTRAL, Ovid MEDLINE, Ovid Embase, Web of Science, ClinicalTrials.gov, ICTRP and additional sources for published and unpublished studies to 20 January 2023. SELECTION CRITERIA: We included randomised controlled trials and quasi-randomised trials in children aged 6 months to 12 years with unilateral or bilateral OME. We included studies that compared oral antibiotics with either placebo or no treatment. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were determined following a multi-stakeholder prioritisation exercise and were: 1) hearing, 2) otitis media-specific quality of life and 3) anaphylaxis. Secondary outcomes were: 1) persistence of OME, 2) adverse effects, 3) receptive language skills, 4) speech development, 5) cognitive development, 6) psychosocial skills, 7) listening skills, 8) generic health-related quality of life, 9) parental stress, 10) vestibular function and 11) episodes of acute otitis media. We used GRADE to assess the certainty of evidence for each outcome. Although we included all measures of hearing assessment, the proportion of children who returned to normal hearing was our preferred method to assess hearing, due to challenges in interpreting the results of mean hearing thresholds. MAIN RESULTS: We identified 19 completed studies that met our inclusion criteria (2581 participants). They assessed a variety of oral antibiotics (including penicillins, cephalosporins, macrolides and trimethoprim), with most studies using a 10- to 14-day treatment course. We had some concerns about the risk of bias in all studies included in this review. Here we report our primary outcomes and main secondary outcome, at the longest reported follow-up time. Antibiotics versus placebo We included 11 studies for this comparison, but none reported all of our outcomes of interest and limited meta-analysis was possible. Hearing One study found that more children may return to normal hearing by two months (resolution of the air-bone gap) after receiving antibiotics as compared with placebo, but the evidence is very uncertain (Peto odds ratio (OR) 9.59, 95% confidence interval (CI) 3.51 to 26.18; 20/49 children who received antibiotics returned to normal hearing versus 0/37 who received placebo; 1 study, 86 participants; very low-certainty evidence). Disease-specific quality of life No studies assessed this outcome. Presence/persistence of OME At 6 to 12 months of follow-up, the use of antibiotics compared with placebo may slightly reduce the number of children with persistent OME, but the confidence intervals were wide, and the evidence is very uncertain (risk ratio (RR) 0.89, 95% CI 0.68 to 1.17; 48% versus 54%; number needed to treat (NNT) 17; 2 studies, 324 participants; very low-certainty evidence). Adverse event: anaphylaxis No studies provided specific data on anaphylaxis. Three of the included studies (448 children) did report adverse events in sufficient detail to assume that no anaphylactic reactions occurred, but the evidence is very uncertain (very low-certainty evidence). Antibiotics versus no treatment We included eight studies for this comparison, but very limited meta-analysis was possible. Hearing One study found that the use of antibiotics compared to no treatment may result in little to no difference in final hearing threshold at three months (mean difference (MD) -5.38 dB HL, 95% CI -9.12 to -1.64; 1 study, 73 participants; low-certainty evidence). The only data identified on the return to normal hearing were reported at 10 days of follow-up, which we considered to be too short to accurately reflect the efficacy of antibiotics. Disease-specific quality of life No studies assessed this outcome. Presence/persistence of OME Antibiotics may reduce the proportion of children who have persistent OME at up to three months of follow-up, when compared with no treatment (RR 0.64, 95% CI 0.50 to 0.80; 6 studies, 542 participants; low-certainty evidence). Adverse event: anaphylaxis No studies provided specific data on anaphylaxis. Two of the included studies (180 children) did report adverse events in sufficient detail to assume that no anaphylactic reactions occurred, but the evidence is very uncertain (very low-certainty evidence). AUTHORS' CONCLUSIONS: The evidence for the use of antibiotics for OME is of low to very low certainty. Although the use of antibiotics compared to no treatment may have a slight beneficial effect on the resolution of OME at up to three months, the overall impact on hearing is very uncertain. The long-term effects of antibiotics are unclear and few of the studies included in this review reported on potential harms. These important endpoints should be considered when weighing up the potential short- and long-term benefits and harms of antibiotic treatment in a condition with a high spontaneous resolution rate.


Subject(s)
Anaphylaxis , Hearing Loss , Otitis Media with Effusion , Child , Humans , Child, Preschool , Anti-Bacterial Agents/adverse effects , Otitis Media with Effusion/drug therapy , Quality of Life , Anaphylaxis/chemically induced , Anaphylaxis/drug therapy , Hearing Loss/etiology , Hearing Loss/chemically induced
3.
Cochrane Database Syst Rev ; 9: CD015253, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37750500

ABSTRACT

BACKGROUND: Otitis media with effusion (OME) is an accumulation of fluid in the middle ear cavity, common amongst young children. The fluid may cause hearing loss. When persistent, it may lead to behavioural problems and a delay in expressive language skills. Management of OME includes watchful waiting, medical, surgical and mechanical treatment. Autoinflation is a self-administered technique, which aims to ventilate the middle ear and encourage middle ear fluid clearance by providing a positive pressure of air in the nose and nasopharynx (using a nasal balloon or other handheld device). This positive pressure (sometimes combined with simultaneous swallow) encourages opening of the Eustachian tube and may help ventilate the middle ear. OBJECTIVES: To assess the efficacy (benefits and harms) of autoinflation for the treatment of otitis media with effusion in children. SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane ENT Register; Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE; Ovid Embase; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 20 January 2023. SELECTION CRITERIA: We included randomised controlled trials (RCTs) and quasi-randomised trials in children aged 6 months to 12 years with unilateral or bilateral OME. We included studies that compared autoinflation with either watchful waiting (no treatment), non-surgical treatment or ventilation tubes. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were determined following a multi-stakeholder prioritisation exercise and were: 1) hearing, 2) OME-specific quality of life and 3) pain and distress. Secondary outcomes were: 1) persistence of OME, 2) other adverse effects (including eardrum perforation), 3) compliance or adherence to treatment, 4) receptive language skills, 5) speech development, 6) cognitive development, 7) psychosocial skills, 8) listening skills, 9) generic health-related quality of life, 10) parental stress, 11) vestibular function and 12) episodes of acute otitis media. We used GRADE to assess the certainty of evidence for each outcome. Although we included all measures of hearing assessment, the proportion of children who returned to normal hearing was our preferred method to assess hearing, due to challenges in interpreting the results of mean hearing thresholds. MAIN RESULTS: We identified 11 completed studies that met our inclusion criteria (1036 participants). The majority of studies included children aged between 3 and 11 years. Most were carried out in Europe or North America, and they were conducted in both hospital and community settings. All compared autoinflation (using a variety of different methods and devices) to no treatment. Most studies required children to carry out autoinflation two to three times per day, for between 2 and 12 weeks. The outcomes were predominantly assessed just after the treatment phase had been completed. Here we report the effects at the longest follow-up for our main outcome measures. Return to normal hearing The evidence was very uncertain regarding the effect of autoinflation on the return to normal hearing. The longest duration of follow-up was 11 weeks. At this time point, the risk ratio was 2.67 in favour of autoinflation (95% confidence interval (CI) 1.73 to 4.12; 85% versus 32%; number needed to treat to benefit (NNTB) 2; 1 study, 94 participants), but the certainty of the evidence was very low. Disease-specific quality of life Autoinflation may result in a moderate improvement in quality of life (related to otitis media) after short-term follow-up. One study assessed quality of life using the Otitis Media Questionnaire-14 (OMQ-14) at three months of follow-up. Results were reported as the number of standard deviations above or below zero difference, with a range from -3 (better) to +3 (worse). The mean difference was -0.42 lower (better) for those who received autoinflation (95% CI -0.62 to -0.22; 1 study, 247 participants; low-certainty evidence; the authors report a change of 0.3 as clinically meaningful). Pain and distress caused by the procedure Autoinflation may result in an increased risk of ear pain, but the evidence was very uncertain. One study assessed this outcome, and identified a risk ratio of 3.50 for otalgia in those who received autoinflation, although the overall occurrence of pain was low (95% CI 0.74 to 16.59; 4.4% versus 1.3%; number needed to treat to harm (NNTH) 32; 1 study, 320 participants; very low-certainty evidence). Persistence of OME The evidence suggests that autoinflation may slightly reduce the persistence of OME at three months. Four studies were included, and the risk ratio for persistence of OME was 0.88 for those receiving autoinflation (95% CI 0.80 to 0.97; 4 studies, 483 participants; absolute reduction of 89 people per 1000 with persistent OME; NNTB 12; low-certainty evidence). AUTHORS' CONCLUSIONS: All the evidence we identified was of low or very low certainty, meaning that we have little confidence in the estimated effects. However, the data suggest that autoinflation may have a beneficial effect on OME-specific quality of life and persistence of OME in the short term, but the effect is uncertain for return to normal hearing and adverse effects. The potential benefits should be weighed against the inconvenience of regularly carrying out autoinflation, and the possible risk of ear pain.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Otitis Media with Effusion , Child , Humans , Child, Preschool , Otitis Media with Effusion/therapy , Cognition , Pain , Epistaxis
SELECTION OF CITATIONS
SEARCH DETAIL
...